X

SBT Toán 7 Kết nối tri thức

Giải SBT Toán 7 trang 31 Tập 1 Kết nối tri thức


Haylamdo sưu tầm và biên soạn Giải SBT Toán 7 trang 31 Tập 1 trong Bài 7: Tập hợp các số thực Sách bài tập Toán lớp 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 31.

Giải SBT Toán 7 trang 31 Tập 1 Kết nối tri thức

Bài 2.22 trang 31 sách bài tập Toán lớp 7 Tập 1: Kí hiệu ;;;𝕀; theo thứ tự là tập hợp các số tự nhiên, tập hợp các số nguyên, tập hợp các số hữu tỉ, tập hợp các số vô tỉ và tập hợp các số thực. Khẳng định nào sau đấy sai?

A. Nếu x thì x;

B. Nếu xx thì x𝕀;

C. 1;

D. Nếu x𝕀 thì x viết được thành số thập phân hữu hạn.

Lời giải:

A. Nếu x ∈ ℕ thì x ∈ ℤ

Khẳng định A đúng vì tất cả các số tự nhiên đều là số nguyên;

B. Nếu x ∈ ℝ và x ∉ ℚ thì x𝕀

Khẳng định B đúng vì tập số thực gồm có số hữu tỉ và số vô tỉ nên nếu x không là số hữu tỉ thì x là số vô tỉ.

C. 1 ∈ ℝ

Khẳng định C đúng vì 1 là số thực.

D. Nếu x𝕀 thì x viết được thành số thập phân hữu hạn

Khẳng định D sai vì nếu x không là số vô tỉ thì x là số hữu tỉ mà số hữu tỉ gồm số thập phân hữu hạn và số thập phân vô hạn tuần hoàn nên khẳng định D sai.

Vậy khẳng định sai là D.

Bài 2.23 trang 31 sách bài tập Toán lớp 7 Tập 1: Xét tính đúng, sai của các khẳng định sau:

a) Nếu x là số hữu tỉ thì x là số thực;

b) 2 không phải là số hữu tỉ;

c) Nếu x là số nguyên thì x là số thực;

d) Nếu x là số tự nhiên thì x là số vô tỉ.

Lời giải:

a) Nếu x là số hữu tỉ thì x là số thực. Khẳng định này đúng vì mọi số hữu tỉ đều là số thực.

b) 2 không phải là số hữu tỉ. Khẳng định này sai vì 2 là số nguyên nên 2 là số hữu tỉ.

c) Nếu x là số nguyên thì x là số thực. Khẳng định này sai vì nếu x < 0 thì không tồn tại x.

d) Nếu x là số tự nhiên thì x là số vô tỉ. Khẳng định này sai vì nếu x = 25 thì x=25 = 5 là số hữu tỉ.

Bài 2.24 trang 31 sách bài tập Toán lớp 7 Tập 1: Tìm số đối của các số thực sau: -2,1; -0,(1); 2π; 3 – 2.

Lời giải:

Số đối của số -2,1 là 2,1 vì (-2,1) + 2,1 = 0;

Số đối của số -0,(1) là 0,(1) vì -0,(1) + 0,(1) = 0;

Số đối của 2π2π2π+2π = 0

Số đối của 3 – 2 là -3 + 2 vì 3 – 2 + (-3) + 2 = 0.

Lời giải bài tập Toán lớp 7 Bài 7: Tập hợp các số thực Kết nối tri thức hay khác:

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức với cuộc sống hay, chi tiết khác: