X

SBT Toán 7 Kết nối tri thức

Giải SBT Toán 7 trang 36 Tập 2 Kết nối tri thức


Haylamdo sưu tầm và biên soạn Giải SBT Toán 7 trang 36 Tập 2 trong Ôn tập chương 7 Sách bài tập Toán lớp 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 36.

Giải SBT Toán 7 trang 36 Tập 2 Kết nối tri thức

Bài 7.35 trang 36 sách bài tập Toán lớp 7 Tập 2: Cho hai đa thức f(x) = 4x4 − 5x3 + 3x + 2 và g(x) = −4x4 + 5x3 + 7. Trong các số −4; −3; 0 và 1, số nào là nghiệm của đa thức f(x) + g(x)?

Lời giải:

Ta có: f(x) + g(x)

= (4x4 − 5x3 + 3x + 2) + (−4x4 + 5x3 + 7)

= 4x4 − 5x3 + 3x + 2 −4x4 + 5x3 + 7

= (4x4 −4x4) + (−5x3 + 5x3) + 3x + (2 + 7)

= 3x + 9.

Để tìm nghiệm của đa thức f(x) + g(x) thì đa thức phải bằng 0.

Suy ra 3x + 9 = 0

x = (−9) : 3 = −3

Vậy nghiệm của đa thức f(x) + g(x) là x = −3

Bài 7.36 trang 36 sách bài tập Toán lớp 7 Tập 2: Cho hai đa thức f(x) = −x5 + 3x2 + 4x + 8 và g(x) = −x5 − 3x2 + 4x + 2. Chứng minh rằng đa thức f(x) – g(x) không có nghiệm.

Lời giải:

Ta cóf(x) – g(x)

= (−x5 + 3x2 + 4x + 8) – (−x5 − 3x2 + 4x + 2)

= −x5 + 3x2 + 4x + 8 + x5 + 3x2 – 4x – 2

= (−x5 + x5) + (3x2 + 3x2) + (4x – 4x) + (8 – 2)

= 6x2 + 6

Vìf(x) – g(x) = 6x2 + 6 ≥ 6 với mọi x nên f(x) – g(x) không có nghiệm.

Bài 7.37 trang 36 sách bài tập Toán lớp 7 Tập 2: Cho hai đa thức sau:

P(x) = 3x5 – 2x4 + 7x2 + 3x – 10

Q(x) = –3x5 – x3 – 7x2 + 2x + 10

a) Xác định bậc, hệ số cao nhất và hệ số tự do của các đa thức

S(x) = P(x) + Q(x) và D(x) = P(x) – Q(x)

b) Trong tập hợp {–1; 0; 1}, tìm những số là nghiệm của một trong hai đa thức S(x) và D(x).

Lời giải:

a) S(x) = P(x) + Q(x)

= (3x5 – 2x4 + 7x2 + 3x – 10) + (–3x5 – x3 – 7x2 + 2x + 10)

= 3x5 – 2x4 + 7x2 + 3x – 10 – 3x5 – x3 – 7x2 + 2x + 10

= (3x5 – 3x5) – 2x4 – x3 + (7x2 – 7x2) + (3x + 2x) + (–10 + 10)

= –2x4 – x3 + 5x

S(x) = –2x4 – x3 + 5x là đa thức bậc 4 với hệ số cao nhất là –2 và hệ số tự do là 0.

D(x) = P(x) – Q(x)

= (3x5 – 2x4 + 7x2 + 3x – 10) − (–3x5 – x3 – 7x2 + 2x + 10)

= 3x5 – 2x4 + 7x2 + 3x – 10 + 3x5 + x3 + 7x2 – 2x – 10

= (3x5 + 3x5 ) – 2x4 + x3 + (7x2 + 7x2)+ (3x – 2x) + (–10 – 10)

= 6x5 – 2x4 + x3 + 14x2 + x – 20

D(x) = 6x5 – 2x4 + x3 + 14x2 + x – 20 là đa thức bậc 5 với hệ số cao nhất là 6 và hệ số tự do là – 20

b) Xét đa thức S(x):

+) Thay x = – 1 vào đa thức S(x) ta được:

S(0) = –2.(– 1)4 – (– 1)3 + 5.(– 1) = – 6 ≠ 0

Do đó x = – 1 không là nghiệm của đa thức S(x).

+) Thay x = 0 vào đa thức S(x) ta được:

S(0) = –2.04 – 03 + 5.0 = 0

Do đó x = 0 là nghiệm của đa thức S(x).

+) Thay x = 1 vào đa thức S(x) ta được:

S(0) = –2.14 – 13 + 5.1 = 2 ≠ 0

Do đó x = 1 không là nghiệm của đa thức S(x).

Xét đa thức D(x):

+) Thay x = – 1 vào đa thức D(x) ta được:

D(1) = 6.(– 1)5 – 2.(– 1)4 + (– 1)3 + 14.(– 1)2 + (– 1) – 20 = – 6 – 2 – 1 + 14 – 1 – 20 = – 16 ≠ 0.

Do đó x = – 1 không là nghiệm của đa thức D(x).

+) Thay x = 0 vào đa thức D(x) ta được:

D(1) = 6.05 – 2.04 + 03 + 14.02 + 0 – 20 = – 20 ≠ 0

Do đó x = 0 không là nghiệm của đa thức D(x).

+) Thay x = 1 vào đa thức D(x) ta được:

D(1) = 6.15 – 2.14 + 13 + 14.12 + 1 – 20 = 6 – 2 + 1 + 14 + 1 – 20 = 0

Do đó x = 1 là nghiệm của đa thức D(x).

Vậy x = 0 là nghiệm của đa thức S(x) và x = 1 là nghiệm của đa thức D(x).

Bài 7.38 trang 36 sách bài tập Toán lớp 7 Tập 2: Biết rằng đa thức f(x) = x4 + px3 – 2x2 + 1 có hai nghiệm (khác 0) là hai số đối nhau. Chứng minh rằng p = 0.

Lời giải:

Gọi hai nghiệm đối nhau của f(x) là a và – a (a ≠ 0). Khi đó ta có:

f(a) = a4 + pa3 – 2a2 + 1 = 0 = f(– a) = (– a)4 + p(–a)3 – 2(–a)2 + 1

Suy ra:

a4 + pa3 – 2a2 + 1 = a4 – pa3 – 2a2 + 1

Thu gọn ta được pa3 = –pa3, suy ra 2pa3 = 0 . Do a ≠ 0 nên từ đẳng thức này suy ra p = 0.

Bài 7.39 trang 36 sách bài tập Toán lớp 7 Tập 2: Thực hiện các phép tính sau:

a) (5x3 – 2x2 + 4x – 4)(3x2 + x – 1);

b) (9x5 – 6x3 + 18x2– 35x – 42) : ( 3x3 + 5x + 6);

c) 6x35x28x+5(4x26x+2) : (2x – 3).

Lời giải:

a) (5x3 – 2x2 + 4x – 4)(3x2 + x – 1)

= 3x2(5x3 – 2x2 + 4x – 4) + x(5x3 – 2x2 + 4x – 4) – 1(5x3 – 2x2 + 4x – 4)

= 15x5 – 6x4 + 12x3 – 12x2 + 5x4 – 2x3 + 4x2 – 4x – 5x3 + 2x2 – 4x + 4

= 15x5 + (–6x4 + 5x4) + (12x3 – 2x3 – 5x3) + (–12x2 + 4x2 + 2x2)+ (–4x– 4x) + 4

= 15x5– x4 + 5x3 – 6x2 – 8x + 4

b)(9x5 – 6x3 + 18x2– 35x – 42) : ( 3x2 + 5x + 6) Thực hiện các phép tính sau: (5x^3 – 2x^2 + 4x – 4)(3x^2 + x – 1)

Vậy phép chia(9x5 – 6x3 + 18x2– 35x – 42) : ( 3x2 + 5x + 6) có thương là 3x2 − 7 và dư 0.

c) 6x35x28x+5(4x26x+2): (2x – 3)

Tính (6x3 − 5x2 − 8x + 5) − (4x2 − 6x + 2)

= 6x3 − 5x2 − 8x + 5 − 4x2 + 6x − 2

= 6x3 + (−5x2 − 4x2) + (−8x + 6x) + (5 − 2)

= 6x3 − 9x2 − 2x + 3

Ta thực hiện tiếp phép chia (6x3 − 9x2 − 2x + 3) : (2x – 3)

Thực hiện các phép tính sau: (5x^3 – 2x^2 + 4x – 4)(3x^2 + x – 1)

Vậy phép chia 6x35x28x+5(4x26x+2): (2x – 3) có thương là 3x2 − 1 và số dư là 0

Bài 7.40 trang 36 sách bài tập Toán lớp 7 Tập 2: Rút gọn các biểu thức sau:

a) A = (x − 1)(x + 2)(x − 3) − (x + 1)(x − 2)(x + 3)

b) B = (x − 1)(x + 1)( x2 + 1)(x4 +1) − x8

Lời giải:

a) A = (x − 1)(x + 2)(x − 3) − (x + 1)(x − 2)(x + 3)

Ta có:

(x − 1)(x + 2)(x − 3)

= [x(x + 2) − 1(x + 2)](x − 3)

= (x2 + 2x − x − 2)(x − 3)

= (x2 + x − 2)(x − 3)

= x(x2 + x − 2) − 3(x2 + x − 2)

= x3 + x2− 2x − 3x2 − 3x + 6

= x3 + (x2− 3x2) + (−2x − 3x) + 6

= x3 − 2x2 − 5x + 6 (1)

(x + 1)(x − 2)(x + 3)

= [x(x − 2) + 1(x − 2)](x + 3)

= (x2 − 2x + x − 2)(x + 3)

= (x2 − x − 2)(x + 3)

= x(x2 − x − 2) + 3(x2 − x − 2)

= x3 − x2− 2x + 3x2 − 3x − 6

= x3 + (−x2+ 3x2) + (−2x − 3x) − 6

= x3 + 2x2 − 5x − 6 (2)

Khi đó: A = (x − 1)(x + 2)(x − 3) − (x + 1)(x − 2)(x + 3) = (1) − (2)

= (x3 − 2x2 − 5x + 6) − (x3 + 2x2 − 5x − 6)

= x3 − 2x2 − 5x + 6 − x3 − 2x2 + 5x + 6

= (x3 − x3) + (−2x2 − 2x2) + (−5x + 5x) + (6 + 6)

= −4x2+ 12.

b) B = (x − 1)(x + 1)( x2 + 1)(x4 +1) − x8

Với M là một biểu thức tùy ý, ta có:

(M − 1)(M + 1) = M2 − M + M − 1 hay (M − 1)(M + 1) = M2 − 1 (1)

Từ đó, ta có:

(x − 1)(x + 1) (áp dụng (1) với M = x)

(x2 − 1)(x2 + 1) = (x2)2 − 1 = x4 − 1 (áp dụng (1) với M = x2)

(x4 − 1)(x4 + 1) = (x4)2 − 1 = x8 − 1 (áp dụng (1) với M = x4).

Sử dụng các kết quả trên, ta được:

(x − 1)(x + 1)(x2 + 1)(x4 + 1)

= (x1)(x+1)(x2 +1)(x4 + 1)

= (x2 − 1)(x2 + 1)(x4 + 1)

= (x21)(x2+1)(x4 + 1)

= (x4 − 1)(x4 + 1)

= x8− 1.

Vậy B = (x − 1)(x + 1)( x2 + 1)(x4 +1) − x8 = x8– 1 − x8 = −1.

Lời giải sách bài tập Toán lớp 7 Ôn tập chương 7 Kết nối tri thức hay khác:

Xem thêm lời giải sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống hay, chi tiết khác: