Trong công viên có một dẻo đất có dạng hình tam giác MCD được mô tả như Hình 15


Trong công viên có một dẻo đất có dạng hình tam giác MCD được mô tả như . Giữa hai điểm A, B là một hồ nước sâu và một con đường đi bộ giữa C và D. Bạn An đi từ C đến D với tốc độ 100 m/phút trong thời gian 2 phút 42 giây. Tính độ dài AB, biết AB // CD và

Giải SBT Toán 8 Bài 2: Ứng dụng của định lí Thalès trong tam giác - Cánh diều

Bài 10 trang 62 SBT Toán 8 Tập 2: Trong công viên có một dẻo đất có dạng hình tam giác MCD được mô tả như Hình 15. Giữa hai điểm A, B là một hồ nước sâu và một con đường đi bộ giữa C và D. Bạn An đi từ C đến D với tốc độ 100 m/phút trong thời gian 2 phút 42 giây. Tính độ dài AB, biết AB // CD và MB=45BD.

Trong công viên có một dẻo đất có dạng hình tam giác MCD được mô tả như Hình 15

Lời giải:

Đổi 2 phút 42 giây = 2710 phút.

Khi đó độ dài CD là CD=1002710=270 (m).

Do MB=45BD nên MBBD=45, do đó MBBD+MB=45+4 hay MBMD=49

Xét ∆MCD với AB // CD, ta có: ABCD=MBMD=49 (hệ quả của định lí Thalès)

Hay AB=49CD.

Vậy độ dài AB là: AB=49270=120 (m).

Lời giải SBT Toán 8 Bài 2: Ứng dụng của định lí Thalès trong tam giác hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 8 Cánh diều hay, chi tiết khác: