Trong các phát biểu sau, phát biểu nào đúng?


Giải SBT Toán 8 Bài 4: Đồ thị hàm số bậc nhất y = ax + b (a ≠ 0) - Cánh diều

Bài 21 trang 61 SBT Toán 8 Tập 1: Trong các phát biểu sau, phát biểu nào đúng?

a) Để vẽ đồ thị của hàm số y = ax + b (a ≠ 0, b ≠ 0), ta có thể xác định hai điểm P(0; b) và Qba;0 rồi vẽ đường thẳng đi qua hai điểm đó.

b) Để vẽ đồ thị của hàm số y = ax + b (a ≠ 0, b ≠ 0), ta có thể xác định hai điểm M(‒1; ‒a + b) và Nba;b rồi vẽ đường thẳng đi qua hai điểm đó.

c) Để vẽ đồ thị của hàm số y = ax + b (a ≠ 0, b ≠ 0), ta có thể xác định hai điểm I(1; a + b) và K(‒2; ‒2a + b) rồi vẽ đường thẳng đi qua hai điểm đó.

Lời giải:

Xét hàm số y = ax + b (a ≠ 0, b ≠ 0):

• Với x = 0 ta có y = b. Do đó đồ thị hàm số y = ax + b đi qua điểm P(0; b).

Với y = 0 ta có 0 = ax + b. Suy ra x=ba.

Do đó đồ thị hàm số y = ax + b đi qua điểm Qba;0.

Vì vậy phát biểu a là đúng và phát biểu b là sai.

• Với x = –1 ta có y = –a + b. Do đó đồ thị hàm số y = ax + b đi qua điểm M(‒1; ‒a + b).

Với x = –2 ta có y = –2a + b. Do đó đồ thị hàm số y = ax + b đi qua điểm K(‒2; ‒2a + b).

Vì vậy phát biểu c là đúng.

Vậy các phát biểu đúng là a, c.

Lời giải SBT Toán 8 Bài 4: Đồ thị hàm số bậc nhất y = ax + b (a ≠ 0) hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 8 Cánh diều hay, chi tiết khác: