Một hình lăng trụ đứng có đáy là một tam giác với ba cạnh bằng 3x, 4x và 5x
Một hình lăng trụ đứng có đáy là một tam giác với ba cạnh bằng 3x, 4x và 5x (biết rằng đó là một tam giác vuông), chiều cao của hình lăng trụ bằng y (x > 0, y > 0). Hãy tìm đa thức với hai biến x và y biểu thị diện tích toàn phần (tổng diện tích xung quanh và diện tích hai đáy) của hình lăng trụ đó. Xác định bậc của đa thức tìm được.
Giải sách bài tập Toán 8 Bài tập cuối chương 1 - Kết nối tri thức
Bài 1.26 trang 18 sách bài tập Toán 8 Tập 1: Một hình lăng trụ đứng có đáy là một tam giác với ba cạnh bằng 3x, 4x và 5x (biết rằng đó là một tam giác vuông), chiều cao của hình lăng trụ bằng y (x > 0, y > 0). Hãy tìm đa thức với hai biến x và y biểu thị diện tích toàn phần (tổng diện tích xung quanh và diện tích hai đáy) của hình lăng trụ đó. Xác định bậc của đa thức tìm được.
Lời giải:
Diện tích toàn phần của hình lăng trụ bằng Stp = Sxq + 2Sđ, trong đó Sxq là diện tích xung quanh, Sđ là diện tích một mặt đáy của hình trụ. Khi đó, ta có:
• Chu vi đáy của hình lăng trụ là 3x + 4x + 5x = 12x.
• Hình lăng trụ có chiều cao là y nên diện tích xung quanh của hình lăng trụ đó là:
Sxq = 12xy (đơn vị diện tích).
• Đáy là tam giác vuông có cạnh lớn nhất là 5x nên hai cạnh góc vuông là 3x và 4x.
Vậy diện tích của nó bằng (đơn vị diện tích).
Do đó, biểu thức biểu thị diện tích toàn phần của hình lăng trụ là
(đơn vị diện tích).
Đó là một đa thức bậc hai.
Lời giải SBT Toán 8 Bài tập cuối chương 1 hay khác:
Câu 1 trang 17 sách bài tập Toán 8 Tập 1: Khi thu gọn đơn thức , ta được đơn thức ...
Câu 4 trang 17 sách bài tập Toán 8 Tập 1: Khi cộng hai đơn thức và ta được đơn thức ...