Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD BC cắt nhau tại S


Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD.

Giải sách bài tập Toán 8 Bài 11: Hình thang cân - Kết nối tri thức

Bài 3.10 trang 34 sách bài tập Toán 8 Tập 1: Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD.

Lời giải:

Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD BC cắt nhau tại S

Do ABCD là hình thang cân nên AD = BC, AC = BD, ADC^=BCD^

Xét ∆ABC và ∆BAD có

BC = AD, AC = BD, cạnh AB chung

Do đó ∆ABC = ∆BAD (c.c.c)

Suy ra BAC^=ABD^.

Từ đó OAB là tam giác cân tại O, nên OA = OB.

Ta có: OA + OC = AC; OB + OD = BD, mà OA = OB, AC = BD

Suy ra OC = OD.

Do đó O cách đều A và B; O cách đều C và D;

Do AB // CD nên SAB^=SDC^;SBA^=SCD^ (các cặp góc ở vị trí đồng vị)

Mà ADC^=BCD^ hay SDC^=SCD^ suy ra SAB^=SDC^=SBA^=SCD^

Suy ra SAB, SCD là các tam giác cân tại đỉnh S nên SA = SB, SC = SD

Do đó S cũng cách đều A và B, cách đều C và D.

Vậy S và O cùng nằm trên đường trung trực của AB, của CD nên đường thẳng SO đi qua trung điểm của AB, CD.

Lời giải SBT Toán 8 Bài 11: Hình thang cân hay khác:

Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác: