Bài 10 trang 104 Toán lớp 10 Tập 2 Cánh diều


Cho biết mỗi đường conic có phương trình dưới đây là đường conic dạng nào (elip, hypebol, parabol) và tìm tọa độ tiêu điểm của đường conic đó.

Giải Toán lớp 10 Bài tập cuối chương 7

Bài 10 trang 104 Toán lớp 10 Tập 2: Cho biết mỗi đường conic có phương trình dưới đây là đường conic dạng nào (elip, hypebol, parabol) và tìm tọa độ tiêu điểm của đường conic đó.

a) y2 = 18x;

b) x264+y225=1;

c) x29y216=1.

Lời giải:

a) Ta có: y2 = 18x y2 = 2 . 9 . x

Do đó, phương trình trên là phương trình của parabol với p = 9.

Ta có p2=92 nên tọa độ tiêu điểm của parabol là F92;0.

b) x264+y225=1x282+y252=1.

Do đó, phương trình trên là phương trình của elip với a = 8, b = 5 thỏa mãn a > b > 0.

Ta có: c2 = a2 – b2 = 64 – 25 = 39, suy ra c = 39.

Vậy tọa độ các tiêu điểm của elip là F139; 0, F239; 0.

c) x29y216=1x232y242=1.

Do đó, phương trình trên là phương trình của hypebol với a = 3, b = 4 thỏa mãn a > 0, b > 0.

Ta có: c2 = a2 + b2 = 9 + 16 = 25, suy ra c = 5.

Vậy tọa độ các tiêu điểm của hypebol là F1(– 5; 0) và F2(5; 0).

Lời giải Toán 10 Bài tập cuối chương 7 trang 103, 104 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: