Bài 11 trang 104 Toán lớp 10 Tập 2 Cánh diều


Cho tam giác AFF, trong đó A(0; 4), F(– 3; 0), F(3; 0).

Giải Toán lớp 10 Bài tập cuối chương 7

Bài 11 trang 104 Toán lớp 10 Tập 2: Cho tam giác AF1F2, trong đó A(0; 4), F1(– 3; 0), F2(3; 0).

a) Lập phương trình tổng quát của các đường thẳng AF1 và AF2.

b) Lập phương trình đường tròn ngoại tiếp của tam giác AF1F2.

c) Lập phương trình chính tắc của elip (E) có hai tiêu điểm là F1, F2 sao cho (E) đi qua A.

Lời giải:

a) Ta có: AF1=3; 4 là một vectơ chỉ phương của đường thẳng AF1, do đó đường thẳng này có một vectơ pháp tuyến là n1=4; 3.

Vậy phương trình tổng quát đường thẳng AF1 là 4(x – 0) – 3(y – 4) = 0 hay 4x – 3y + 12 = 0.

Lại có: AF2=3; 4 là một vectơ chỉ phương của đường thẳng AF2, do đó đường thẳng này có một vectơ pháp tuyến là n2=4; 3.

Vậy phương trình tổng quát đường thẳng AF2 là 4(x – 0) + 3(y – 4) = 0 hay 4x + 3y – 12 = 0.

b) Đường tròn ngoại tiếp tam giác AF1F2 là đường tròn đi qua 3 điểm A, F1, F2.

Giả sử tâm của đường tròn là điểm I(a; b).

Ta có IA = IF1 = IF2 IA2 =IF12 = IF22 .

Vì IA2 = IF12, IF12 = IF22 nên

Bài 11 trang 104 Toán lớp 10 Tập 2 Cánh diều

Đường tròn tâm I0; 78 bán kính R = IA = 0a2+4b2=4782=258.

Phương trình đường tròn (C) là x02+y782=2582.

Vậy phương trình đường tròn (C) là x2+y782=62564.

c) Phương trình chính tắc của elip (E) có dạng x2a2+y2b2=1 a>b>0.

Elip (E) đi qua điểm A(0; 4), thay tọa độ điểm A vào phương trình elip ta được 02a2+42b2=1b2=42b=4do b>0.

Elip (E) có hai tiêu điểm là F1(– 3; 0), F2(3; 0), do đó c = 3.

Suy ra a2 – b2 = c2 hay a2 – 42 = 32 a2 = 9 + 16 = 25 = 52, suy ra a = 5 (do a > 0).

Khi đó a > b > 0 (do 5 > 4 > 0), vậy a = 5, b = 4 là thỏa mãn.

Vậy phương trình elip (E) cần lập là x252+y242=1 hay x225+y216=1.

Lời giải Toán 10 Bài tập cuối chương 7 trang 103, 104 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: