Giải Toán 10 trang 75 Tập 2 Cánh diều


Haylamdo biên soạn và sưu tầm với giải Toán 10 trang 75 Tập 2 trong Bài 3: Phương trình đường thẳng Toán lớp 10 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 75.

Giải Toán 10 trang 75 Tập 2 Cánh diều

Luyện tập 1 trang 75 Toán lớp 10 Tập 2: Cho đường thẳng Δ có phương trình tham số

Cho đường thẳng denta có phương trình tham số

a) Chỉ ra tọa độ của hai điểm thuộc đường thẳng Δ.

b) Điểm nào trong các điểm C(– 1; – 1), D(1; 3) thuộc đường thẳng Δ.

Lời giải:

Cho đường thẳng denta có phương trình tham số

Điểm A(1; – 2) thuộc đường thẳng ∆.

+ Ứng với t = 1 ta có

Điểm B(– 1; – 1) thuộc đường thẳng ∆.

Chú ý: Ta chỉ cần lấy một số thực t bất kì thay vào phương trình tham số, ta sẽ được tọa độ 1 điểm thuộc đường thẳng ∆.

b) Theo câu a) điểm B(– 1; – 1) thuộc đường thẳng Δ ứng với t = 1, khi đó C ≡ B.

Vậy điểm C(– 1; – 1) thuộc đường thẳng ∆.

Thay tọa độ điểm D(1; 3) vào đường thẳng Δ ta được:

Cho đường thẳng denta có phương trình tham số

Vậy điểm D(1; 3) không thuộc đường thẳng ∆.

Hoạt động 3 trang 75 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆. Vẽ vectơ n n0 có giá vuông góc với đường thẳng ∆ (Hình 27).

Trong mặt phẳng tọa độ Oxy, cho đường thẳng denta

Lời giải:

Cách vẽ:

- vẽ 1 đoạn thẳng vuông góc với đường thẳng ∆.

- Vẽ hướng mũi tên trên đoạn thẳng đó, ta được vectơ chỉ phương thỏa mãn yêu cầu bài toán.

Hoạt động 4 trang 75 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆ đi qua điểm M0(x0; y0) và có vectơ pháp tuyến n=a; b. Xét điểm M(x; y) nằm trên ∆ (Hình 28)

Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆ đi qua điểm M0 và có vectơ pháp tuyến n

a) Nhận xét về phương của hai vectơ nM0M.

b) Tìm mối liên hệ giữa tọa độ của điểm M với tọa độ của điểm M0 và tọa độ của vectơ pháp tuyến n.

Lời giải:

a) Vectơ n là vectơ pháp tuyến của đường thẳng ∆ nên giá của vectơ n vuông góc với đường thẳng ∆.

Đường thẳng ∆ đi qua điểm M0 và M, nên đường thẳng ∆ chính là đường thẳng MM0. Khi đó vectơ M0M có giá chính là đường thẳng ∆.

Do đó giá của vectơ n và giá của vectơ M0M vuông góc với nhau.

Vậy hai vectơ hai vectơ nM0M không cùng phương.

b) Ta có: M0M=xx0; yy0, n=a; b.

Xét điểm M(x; y) thuộc ∆. Vì M0Mn nên

M0M . n=0a(x – x0) + b(y – y0) = 0 ax + by – ax0 – by0 = 0.

Lời giải bài tập Toán lớp 10 Bài 3: Phương trình đường thẳng Cánh diều hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: