Mở đầu trang 77 Toán 10 Tập 2 - Kết nối tri thức


Khi tham gia một trò chơi bốc thăm trúng thưởng, mỗi người chọn một bộ 6 số đôi một khác nhau từ 45 số: 1; 2; 3; …; 45, chẳng hạn bạn An chọn bộ số {5; 13; 20; 31; 32; 35}.

Giải Toán lớp 10 Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Mở đầu trang 77 Toán 10 Tập 2: Khi tham gia một trò chơi bốc thăm trúng thưởng, mỗi người chọn một bộ 6 số đôi một khác nhau từ 45 số: 1; 2; 3; …; 45, chẳng hạn bạn An chọn bộ số {5; 13; 20; 31; 32; 35}. 

Sau đó, người quản trò bốc ngẫu nhiên 6 quả bóng (không hoàn lại) từ một thùng kín đựng 45 quả bóng như nhau ghi các số 1; 2; 3; …; 45. Bộ 6 số ghi trên 6 quả bóng đó được gọi là bộ số trúng thưởng. Nếu bộ số của người chơi trùng với bộ số trúng thưởng thì người chơi trúng giải độc đặc; nếu trùng với 5 số của bộ số trúng thưởng thì người chơi trúng giải nhất. 

Mở đầu trang 77 Toán 10 Tập 2 | Kết nối tri thức Giải Toán lớp 10

Tính xác suất bạn An trúng giải độc đắc, giải nhất khi chơi. 

Trong bài học này, ta sẽ tìm hiểu một số khái niệm cơ bản và định nghĩa cổ điển của xác suất, từ đó giúp ta có cơ sở trả lời câu hỏi nêu trên.  

Lời giải:

Qua bài học này ta sẽ giải quyết bài toán trên như sau: 

Phép thử của bài toán là chọn ngẫu nhiên 6 số trong 45 số: 1; 2; 3; …; 45. Không gian mẫu Ω là tập hợp tất cả các tập con có 6 phần tử của tập {1; 2; 3; …; 45}. 

Do đó số phần tử của không gian mẫu là n(Ω) = C456

+ Gọi F là biến cố: “Bạn An trúng giải độc đắc”. 

Ta có: F là tập hợp có duy nhất 1 phần tử là tập {5; 13; 20; 31; 32; 35}. Do đó, n(F) = 1. 

Vậy xác suất để bạn An trúng giải độc đắc là PF=nFnΩ=1C456=18  145  060

+ Gọi G là biến cố: “Bạn An trúng giải nhất”.

Vì nếu bộ số của người chơi trùng với 5 số của bộ số trúng thưởng thì người chơi trúng giải nhất. 

Do đó G là tập hợp tất cả các tập con gồm 6 phần tử của tập {1; 2; 3; …; 45} có tính chất: năm phần tử của nó thuộc tập {5; 13; 20; 31; 32; 35} và một phần tử còn lại không thuộc tập {5; 13; 20; 31; 32; 35}. Nghĩa là phần tử còn lại này phải thuộc tập {1; 2; 3; …; 45} \ {5; 13; 20; 31; 32; 35} (tập hợp này gồm 45 – 6 = 39 phần tử).

Mỗi phần tử của G được hình thành từ hai công đoạn.

Công đoạn 1. Chọn 5 phần tử trong tập {5; 13; 20; 31; 32; 35}, có C65 cách chọn. 

Công đoạn 2. Chọn 1 phần tử trong 39 phần tử còn lại, có C391 cách chọn. 

Theo quy tắc nhân, số phần tử của G là: n(G) = (phần tử). 

Vậy xác suất để bạn An trúng giải nhất là PG=nGnΩ=234C456=391  357510.

Lời giải bài tập Toán 10 Bài 26: Biến cố và định nghĩa cổ điển của xác suất hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2