Câu 1:
A – Trắc nghiệm
Phương trình nào sau đây là phương trình tham số của đường thẳng?
A. 2x – y + 1 = 0.
B. .
C. x2 + y2 = 1.
D. y = 2x + 3.
Xem lời giải »
Câu 2:
Phương trình nào sau đây là phương trình tổng quát của đường thẳng?
A. – x – 2y + 3 = 0.
B. .
C. y2 = 2x.
D. .
Xem lời giải »
Câu 3:
Phương trình nào sau đây là phương trình của đường tròn?
A. x2 – y2 = 1.
B. (x – 1)2 + (y – 2)2 = – 4.
C. x2 + y2 = 2.
D. y2 = 8x.
Xem lời giải »
Câu 4:
Phương trình nào sau đây là phương trình chính tắc của đường elip?
A. .
B. .
C.
D.
Xem lời giải »
Câu 5:
Phương trình nào sau đây là phương trình chính tắc của đường hypebol?
A.
B.
C.
D.
Xem lời giải »
Câu 6:
Phương rình nào sau đây là phương trình chính tắc của đường parabol?
A. x2 = 4y.
B. x2 = – 6y.
C. y2 = 4x.
D. y2 = – 4x.
Xem lời giải »
Câu 7:
B – Tự luận
Trong mặt phẳng tọa độ, cho A(1; – 1), B(3; 5), C(– 2; 4). Tính diện tích tam giác ABC.
Xem lời giải »
Câu 8:
Trong mặt phẳng tọa độ, cho hai điểm A(– 1; 0) và B(3; 1).
a) Viết phương trình đường tròn tâm A và đi qua B.
b) Viết phương trình tổng quát của đường thẳng AB.
c) Viết phương trình đường tròn tâm O và tiếp xúc với đường thẳng AB.
Xem lời giải »
Câu 9:
Cho đường tròn (C) có phương trình x2 + y2 – 4x + 6y – 12 = 0.
a) Tìm tọa độ tâm I và bán kính R của (C).
b) Chứng minh rằng điểm M(5; 1) thuộc (C). Viết phương trình tiếp tuyến d của (C) tại M.
Xem lời giải »
Câu 10:
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\,\,\,\left( {a > b > 0} \right)\).
a) Tìm các giao điểm A1, A2 của (E) với trục hoành và các giao điểm B1, B2 của (E) với trục tung. Tính A1A2, B1B2.
b) Xét một điểm bất kì M(x0; y0) thuộc (E).
Chứng minh rằng, b2 ≤ x02 + y02 ≤ a2 và b ≤ OM ≤ a.
Chú ý: A1A2, B1B2 tương ứng được gọi là trục lớn, trục nhỏ của elip (E) và tương ứng có độ dài là 2a, 2b.
Xem lời giải »
Câu 11:
Cho hypebol có phương trình: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).
a) Tìm các giao điểm A1, A2 của hypebol với trục hoành (hoành độ của A1 nhỏ hơn của A2).
b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh nằm bên trái trục tung của hypebol thì x ≤ − a, nếu điểm M(x; y) thuộc nhánh nằm bên phải trục tung của hypebol thì x ≥ a.
c) Tìm các điểm M1, M2 tương ứng thuộc cách nhánh bên trái, bên phải trục tung của hypebol để M1M2 nhỏ nhất.
Xem lời giải »
Câu 12:
Một cột trụ hình hypebol (H.7.36), có chiều cao 6 m, chỗ nhỏ nhất ở chính giữa và rộng 0,8 m, đỉnh cột và đáy cột đều rộng 1 m. Tính độ rộng của cột ở độ cao 5 m (tính theo đơn vị mét và làm tròn tới hai chữ số sau dấu phẩy).
Xem lời giải »