Bài 9 trang 121 Toán 11 Tập 1 Cánh diều


Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AB, C’D’.

Giải Toán 11 Bài tập cuối chương 4 - Cánh diều

Bài 9 trang 121 Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AB, C’D’.

a) Chứng minh rằng (A’DN) // (B’CM).

b) Gọi E, F lần lượt là giao điểm của đường thẳng D’B với các mặt phẳng (A’DN), (B’CM). Chứng minh rằng D’E = BF = 12 EF.

Lời giải:

a)

Bài 9 trang 121 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Ta có: (ADD’A’) // (CBC’B’);

           (ADD’A’) ∩ (DCB’A’) = A’D;

           (CBC’B’) ∩ (DCB’A’) = B’C.

Do đó A’D // B’C, mà B’C ⊂ (B’CM) nên A’D // (B’CM).

Tương tự: (ABB’A’) // (DCC’D’);

                 (ABB’A’) ∩ (DMB’N) = MB’;

                 (DCC’D’) ∩ (DMB’N) = DN.

Do đó MB’ // DN, mà MB’ ⊂ (B’CM) nên DN // (B’CM).

Ta có: A’D // (B’CM);

           DN // (B’CM);

           A’D, DN cắt nhau tại điểm D và cùng nằm trong mp(A’DN)

Do đó (A’DN) // (B’CM).

b)

Bài 9 trang 121 Toán 11 Tập 1 | Cánh diều Giải Toán 11

• Trong mp(A’B’C’D’), gọi J là giao điểm của A’N và B’D’.

Trong mp(BDD’B’), D’B cắt DJ tại E.

Ta có: D’B ∩ DJ = {E} mà DJ ⊂ (A’DN) nên E là giao điểm của D’B và (A’DN).

Tương tự, trong mp(ABCD), gọi I là giao điểm của CM và BD.

Trong mp(BDD’B’), D’B cắt B’I tại F.

Ta có: D’B ∩ B’I = {F} mà B’I ⊂ (B’CM) nên F là giao điểm của D’B và (B’CM).

• Ta có: (A’DN) // (B’CM);

              (A’DN) ∩ (BDD’B’) = DJ;

              (B’CM) ∩ (BDD’B’) = B’I.

Do đó DJ // B’I.

Trong mp(BDD’B’), xét DBDE có IF // DE nên theo định lí Thalès ta có: BIBD=BFBE  (1)

Trong mp(ABCD), gọi O là giao điểm của hai đường chéo AC và BD trong hình bình hành ABCD. Khi đó O là trung điểm của AC, BD.

Xét ABC, hai đường trung tuyến BO, CM cắt nhau tại I nên I là trọng tâm của tam giác

Suy ra BIBO=23  hay BI12BD=2BIBD=23

Do đó BIBD=13 (2)

Từ (1) và (2) suy ra BFBE=13

Suy ra BFBEBF=131  hay BFEF=12 .

Chứng minh tương tự ta cũng có D'ED'F=D'JD'B'=13

Suy ra D'ED'FD'E=131  hay D'EEF=12

Do đó BFEF=D'EEF=12  nên BF = D’E = 12 EF.

Lời giải bài tập Toán 11 Bài tập cuối chương 4 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: