Cho đường thẳng a song song với mặt phẳng (P). Mặt phẳng (Q) chứa đường thẳng a và cắt mặt phẳng (P) theo giao tuyến là đường thẳng b. Vị trí tương đối của hai đường thẳng a và b là A. chéo


Câu hỏi:

Cho đường thẳng a song song với mặt phẳng (P). Mặt phẳng (Q) chứa đường thẳng a và cắt mặt phẳng (P) theo giao tuyến là đường thẳng b. Vị trí tương đối của hai đường thẳng a và b là

A. chéo nhau.

B. cắt nhau.

C. song song.

D. trùng nhau.

Trả lời:

Lời giải:

Đáp án đúng là: C

Theo lý thuyết ta có: Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a và cắt mặt phẳng (P) theo giao tuyến b thì b song song với a.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SD. Đường thẳng SB song song với mặt phẳng

A. (CDM).

B. (ACM).

C. (ADM).

D. (ACD).

Xem lời giải »


Câu 2:

Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (AB'D') song song với mặt phẳng

A. (ABCD).

B. (BCC'B').

C. (BDA').

D. (BDC').

Xem lời giải »


Câu 3:

Cho ba mặt phẳng (P), (Q), (R) đôi một song song với nhau. Đường thẳng a cắt các mặt phẳng (P), (Q), (R) lần lượt tại A, B, C sao cho \(\frac{{AB}}{{BC}} = \frac{2}{3}\) và đường thẳng b cắt các mặt phẳng (P), (Q), (R) lần lượt tại A', B', C'. Tỉ số \(\frac{{A'B'}}{{B'C'}}\) bằng

A. \(\frac{2}{3}\).

B. \(\frac{1}{2}\).

C. \(\frac{3}{2}\).

D. \(\frac{2}{5}\).

Xem lời giải »


Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD; K là giao điểm của mặt phẳng (AMN) và đường thẳng SC. Tỉ số \(\frac{{SK}}{{SC}}\) bằng

A. \(\frac{1}{2}\).

B. \(\frac{1}{3}\).

C. \(\frac{1}{4}\).

D. \(\frac{2}{3}\).

Xem lời giải »