Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB // CD và AB = BC = DA = a, CD = 2a. Biết hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD)
Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB // CD và AB = BC = DA = a, CD = 2a. Biết hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) và . Tính theo a khoảng cách từ S đến mặt phẳng (ABCD) và thể tích của khối chóp S.ABCD.
Trả lời:
Gọi O là giao điểm của AC và BD.
Vì hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) nên SO ^ (ABCD).
Khi đó d(S, (ABCD)) = SO.
Kẻ AH ^ DC tại H, BK ^ DC tại K.
Khi đó ABKH là hình chữ nhật nên AB = HK = a.
Xét DAHD và DBKC có: AD = BC = a, , (do ABCD là hình thang cân).
Do đó DAHD = DBKC, suy ra DH = CK = ;
CH = HK + CK = .
Xét tam giác AHD vuông tại H, có .
Xét tam giác AHC vuông tại H, có .
Vì AB // CD nên .
Xét tam giác SOA vuông tại O, có .
Khi đó d(S, (ABCD)) .
Ta có .
Vậy .