Một cửa hàng đã ghi lại số tiền bán xăng cho 35 khách hàng đi xe máy. Mẫu số liệu gốc có dạng: x1, x2, ..., x35­ trong đó xi là số tiền bán xăng cho khách hàng thứ i. Vì một lí do nào đó, cửa


Câu hỏi:

Một cửa hàng đã ghi lại số tiền bán xăng cho 35 khách hàng đi xe máy. Mẫu số liệu gốc có dạng: x1, x2, ..., x35­ trong đó xi là số tiền bán xăng cho khách hàng thứ i. Vì một lí do nào đó, cửa hàng chỉ có mẫu số liệu ghép nhóm dạng sau:

Số tiền (nghìn đồng)

[0; 30)

[30; 60)

[60; 90)

[90; 120)

Số khách hàng

3

15

10

7

Bảng 3.1. Số tiền khách hàng mua xăng

Dựa trên mẫu số liệu ghép nhóm này, làm thế nào để ước lượng các số đặc trưng đo xu thế trung tâm (số trung bình, trung vị, tứ phân vị, mốt) cho mẫu số liệu gốc?

Trả lời:

Lời giải:

Sau bài học này, ta sẽ giải quyết được bài toán trên như sau:

+) Số trung bình

Trong mỗi khoảng số tiền, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Số tiền (nghìn đồng)

15

45

75

105

Số khách hàng

3

15

10

7

 Tổng số khách hàng là n = 35. Số tiền bán xăng trung bình của 35 khách hàng là

\(\overline x = \frac{{3.15 + 15.45 + 10.75 + 7.105}}{{35}} = 63\) (nghìn đồng).

Do đó, số trung bình cho mẫu số liệu gốc khoảng 63 nghìn đồng.

+) Số trung vị, tứ phân vị

Cỡ mẫu là n = 35.

Gọi x1, x2, ..., x35 là số tiền xăng của 35 khách hàng và giả sử dãy này đã được sắp xếp theo thứ tự tăng dần. Khi đó, trung vị là x18. Do x18­ thuộc nhóm [30; 60) nên nhóm này chứa trung vị. Do đó, p = 2; a2 = 30; m2 = 15; m1 = 3; a3 – a2 = 60 – 30 = 30 và ta có

\({M_e} = 30 + \frac{{\frac{{35}}{2} - 3}}{{15}}.30 = 59\).

Tứ phân vị thứ nhất Q1 là x9. Do x9 thuộc nhóm [30; 60) nên nhóm này chứa Q1. Do đó, p = 2; a2 = 30; m2 = 15; m1 = 3; a3 – a2 = 60 – 30 = 30 và ta có

\({Q_1} = 30 + \frac{{\frac{{35}}{4} - 3}}{{15}}.30 = 41,5\).

Tứ phân vị thứ ba Q3 là x27. Do x27 thuộc nhóm [60; 90) nên nhóm này chứa Q3. Do đó, p = 3; a3 = 60; m3 = 10; m1 + m2 = 3 + 15 = 18; a4 – a3 = 90 – 60 = 30 và ta có

\({Q_3} = 60 + \frac{{\frac{{3.35}}{4} - 18}}{{10}}.30 = 84,75\).

Tứ phân vị thứ hai Q2 = Me = 59.

Do đó, trung vị của mẫu số liệu gốc khoảng 59 và các tứ phân vị khoảng 41,5; 59; 84,75.

+) Mốt

Tần số lớn nhất là 15 nên nhóm chứa mốt là nhóm [30; 60). Ta có, j = 2, a2 = 30, m2 = 15, m1 = 3, m3 = 10, h = 30. Do đó

\({M_o} = 30 + \frac{{15 - 3}}{{\left( {15 - 3} \right) + \left( {15 - 10} \right)}}.30 \approx 51,18\).

Vậy mốt của mẫu số liệu gốc xấp xỉ 51,18.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Khảo sát thời gian tự học của các học sinh trong lớp theo mẫu bên.

Media VietJack

a) Hãy lập bảng thống kê cho mẫu số liệu ghép nhóm thu được.

b) Có thể tính chính xác thời gian tự học trung bình của các học sinh trong lớp không?

c) Có cách nào tính gần đúng thời gian tự học trung bình của các học sinh trong lớp dựa trên mẫu số liệu ghép nhóm này không?

Xem lời giải »


Câu 2:

Tìm hiểu thời gian xem ti vi trong tuần trước (đơn vị: giờ) của một số học sinh thu được kết quả sau:

Thời gian (giờ)

[0; 5)

[5; 10)

[10; 15)

[15; 20)

[20; 25)

Số học sinh

8

16

4

2

2

 Tính thời gian xem ti vi trung bình trong tuần trước của các bạn học sinh này.

Xem lời giải »


Câu 3:

Cho mẫu số liệu ghép nhóm về chiều cao của 21 câu na giống.

Chiều cao (cm)

[0; 5)

[5; 10)

[10; 15)

[15; 20)

Số cây

3

8

7

3

Gọi x1, x2, ..., x21 là chiều cao của các cây giống, đã được sắp xếp theo thứ tự tăng dần. Khi đó, x1, ..., x3 thuộc [0; 5), x4, ..., x11 thuộc [5; 10), ... Hỏi trung vị thuộc nhóm nào?

Xem lời giải »


Câu 4:

Ghi lại tốc độ bóng trong 200 lần giao bóng của một vận động viên môn quần vợt cho kết quả như bảng bên.

Tốc độ v (km/h)

Số lần

150 ≤ v < 155

18

155 ≤ v < 160

28

160 ≤ v < 165

35

165 ≤ v < 170

43

170 ≤ v < 175

41

175 ≤ v < 180

35

 Tính trung vị của mẫu số liệu ghép nhóm này.

Xem lời giải »