Giải Toán 11 trang 53 Tập 1 Kết nối tri thức


Haylamdo biên soạn và sưu tầm với Giải Toán 11 trang 53 Tập 1 trong Bài 7. Cấp số nhân Toán lớp 11 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 53.

Giải Toán 11 trang 53 Tập 1 Kết nối tri thức

Luyện tập 1 trang 53 Toán 11 Tập 1: Cho dãy số (un) với un = 2 . 5n. Chứng minh rằng dãy số này là một cấp số nhân. Xác định số hạng đầu và công bội của nó.

Lời giải:

Với mọi n ≥ 2, ta có:

unun1=2.5n2.5n1=5n5n5=5,

tức là u5 = 5un – 1 với mọi n ≥ 2.

Vậy (un) là một cấp số nhân với số hạng đầu u1 = 2 . 51 = 10 và công bội q = 5.

HĐ1 trang 53 Toán 11 Tập 1:

Cho cấp số nhân (un) với số hạng đầu u1 và công bội q.

a) Tính các số hạng u2, u3, u4, u5 theo u1 và q.

b) Dự đoán công thức tính số hạng thứ n theo u1 và q.

Lời giải:

a) Ta có: u2 = u1 . q;

u3 = u2 . q = (u1 . q) . q = u1 . q2;

u4 = u3 . q = (u1 . q2) . q = u1 . q3;

u5 = u4 . q = (u1 . q3) . q = u1 . q4.

b) Dự đoán công thức tính số hạng thứ n theo u1 và q là un = u1 . qn – 1 với n ≥ 2.

Lời giải bài tập Toán 11 Bài 7. Cấp số nhân hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác: