Viết năm số hạng đầu của mỗi dãy số (un) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức tính số hạng tổng quát của nó dưới dạng un = u


Câu hỏi:

Viết năm số hạng đầu của mỗi dãy số (un) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức tính số hạng tổng quát của nó dưới dạng un = u1 . qn – 1.

a) un = 5n;

b) un = 5n;

c) u1 = 1, un = nun – 1;

d) u1 = 1, un = 5un – 1.

Trả lời:

Lời giải:

a) +) Năm số hạng đầu của dãy số là: u1 = 5 . 1 = 5;

u2 = 5 . 2 = 10;

u3 = 5 . 3 = 15;

u4 = 5 . 4 = 20;

u5 = 5 . 5 = 25;

+) Với mọi n ≥ 2 ta có \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5\left( {n - 1} \right)}} = \frac{n}{{n - 1}} = \frac{{n - 1 + 1}}{{n - 1}} = 1 + \frac{1}{{n - 1}}\) luôn thay đổi.

Do đó, dãy số (un) không là cấp số nhân.

b) +) Năm số hạng đầu của dãy số là: u1 = 51 = 5;

u2 = 52 = 25;

u3 = 53 = 125;

u4 = 54 = 625;

u5 = 55 = 3 125;

+) Với mọi n ≥ 2 ta có

\(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = \frac{{{5^{n - 1}}.5}}{{{5^{n - 1}}}} = 5\),

tức là un = 5un – 1 với mọi n ≥ 2.

Do đó, (un) là cấp số nhân với số hạng đầu u1 = 5, công bội q = 5 và số hạng tổng quát là un = u1 . qn – 1 = 5 . 5n – 1 = 51 + n – 1 = 5n.

c) +) Năm số hạng đầu của dãy số là: u1 = 1;

u2 = 2 . u1 = 2 . 1 = 2;

u3 = 3 . u2 = 3 . 2 = 6;

u4 = 4 . u3 = 4 . 6 = 24;

u5 = 5 . u4 = 5 . 24 = 120.

+) Ta có: un = nun – 1, suy ra \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) luôn thay đổi với mọi n ≥ 2.

Vậy dãy số (un) không là cấp số nhân.

d) +) Năm số hạng đầu của dãy số là: u1 = 1;

u2 = 5 . u1 = 5 . 1 = 5;

u3 = 5 . u2 = 5 . 5 = 25;

u4 = 5 . u3 = 5 . 25 = 125;

u5 = 5 . u4 = 5 . 125 = 625.

+) Ta có: un = 5un – 1, suy ra \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5\) với mọi n ≥ 2.

Vậy dãy số (un) là cấp số nhân với số hạng đầu u1 = 1, công bội q = 5 và có số hạng tổng quát un = u1 . qn – 1 = 1 . 5n – 1 = 5n – 1.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một công ty tuyển một chuyên gia về công nghệ thông tin với mức lương năm đầu là 240 triệu đồng và cam kết sẽ tăng thêm 5% lương mỗi năm so với năm liền trước đó. Tính tổng số lương mà chuyên gia đó nhận được sau khi làm việc cho công ty 10 năm (làm tròn đến triệu đồng).

Xem lời giải »


Câu 2:

Cho dãy số (un) với un = 3 . 2n.

a) Viết năm số hạng đầu của dãy số này.

b) Dự đoán hệ thức truy hồi liên hệ giữa un và un – 1.

Xem lời giải »


Câu 3:

Dãy số không đổi a, a, a, ... có phải là một cấp số nhân không?

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = 2 . 5n. Chứng minh rằng dãy số này là một cấp số nhân. Xác định số hạng đầu và công bội của nó.

Xem lời giải »


Câu 5:

Một cấp số nhân có số hạng thứ 6 bằng 96 và số hạng thứ 3 bằng 12. Tìm số hạng thứ 50 của cấp số nhân này.

Xem lời giải »


Câu 6:

Một cấp số nhân có số hạng đầu bằng 5 và công bội bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số nhân này để có tổng bằng 5 115?

Xem lời giải »


Câu 7:

Một công ty xây dựng mua một chiếc máy ủi với giá 3 tỉ đồng. Cứ sau mỗi năm sử dụng, giá trị của chiếc máy ủi này lại giảm 20% so với giá trị của nó trong năm liền trước đó. Tìm giá trị còn lại của chiếc máy ủi đó sau 5 năm sử dụng.

Xem lời giải »


Câu 8:

Vào năm 2020, dân số của một quốc gia là khoảng 97 triệu người và tốc độ tăng trưởng dân số là 0,91%. Nếu tốc độ tăng trưởng dân số này được giữ nguyên hằng năm, hãy ước tính dân số của quốc gia đó vào năm 2030.

Xem lời giải »