Viết phương trình tiếp tuyến của đồ thị hàm số y = x3 + 3x2 – 1 tại điểm có hoành độ bằng 1.


Câu hỏi:

Viết phương trình tiếp tuyến của đồ thị hàm số y = x3 + 3x2 – 1 tại điểm có hoành độ bằng 1.

Trả lời:

Ta có: y' = 3x2 + 6x y'(1) = 3 . 12 + 6 . 1 = 9.

Ngoài ra, f(1) = 13 + 3 . 12 – 1 = 3 nên phương trình tiếp tuyến cần tìm là:

y – 3 = 9(x – 1) hay y = 9x – 6.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Với u, v là các hàm số hợp theo biến x, quy tắc tính đạo hàm nào sau đây là đúng?

Xem lời giải »


Câu 2:

Cho hàm số f(x) = x2 + sin3x. Khi đó  f'π2 bằng

Xem lời giải »


Câu 3:

Cho hàm số f(x) = 13x3x23x+1  . Tập nghiệm của bất phương trình f'(x) ≤ 0 là

Xem lời giải »


Câu 4:

Cho hàm số f(x)=4+3u(x)  với u(1) = 7, u'(1) = 10. Khi đó f'(1) bằng

Xem lời giải »


Câu 5:

Đồ thị của hàm số y=ax  (a là hằng số dương) là một đường hypebol. Chứng minh rằng tiếp tuyến tại một điểm bất kì của đường hypebol đó tạo với các trục tọa độ một tam giác có diện tích không đổi.

Xem lời giải »


Câu 6:

Hình 9.10 biểu diễn đồ thị của ba hàm số. Hàm số thứ nhất là hàm vị trí của một chiếc ô tô, hàm số thứ hai biểu thị vận tốc và hàm số thứ ba biểu thị gia tốc của ô tô đó. Hãy xác định đồ thị của mỗi hàm số này và giải thích.

Hình 9.10 biểu diễn đồ thị của ba hàm số. Hàm số thứ nhất là hàm vị trí của một chiếc ô tô, hàm số thứ hai biểu thị vận tốc và hàm số thứ ba biểu thị gia tốc của ô tô đó. Hãy xác định đồ thị của mỗi hàm số này và giải thích.   (ảnh 1)

Xem lời giải »


Câu 7:

Vị trí của một vật chuyển động thẳng được cho bởi phương trình: s = f(t) = t3 – 6t2 + 9t, trong đó t tính bằng giây và s tính bằng mét.

a) Tính vận tốc của vật tại các thời điểm t = 2 giây và t = 4 giây.

b) Tại những thời điểm nào vật đứng yên?

Xem lời giải »


Câu 8:

c) Tìm gia tốc của vật tại thời điểm t = 4 giây.

d) Tính tổng quãng đường vật đi được trong 5 giây đầu tiên.

e) Trong 5 giây đầu tiên, khi nào vật tăng tốc, khi nào vật giảm tốc?

Xem lời giải »