Giải Toán 12 trang 13 Tập 1 Cánh diều
Với Giải Toán 12 trang 13 Tập 1 trong Bài 1: Tính đơn điệu của hàm số Toán 12 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 12 dễ dàng làm bài tập Toán 12 trang 13.
Giải Toán 12 trang 13 Tập 1 Cánh diều
Bài 1 trang 13 Toán 12 Tập 1: Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A. (1; + ∞).
B. (– 1; 0).
C. (– 1; 1).
D. (0; 1).
Lời giải:
Đáp án đúng là: D
Quan sát bảng biến thiên ta thấy f'(x) > 0 với mọi x ∈ (– ∞; – 1) ∪ (0; 1).
Vậy hàm số đã cho đồng biến trên mỗi khoảng (– ∞; – 1), (0; 1).
Bài 2 trang 13 Toán 12 Tập 1: Cho hàm số y = f(x) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
A. 2.
B. 3.
C. – 4.
D. 0.
Lời giải:
Đáp án đúng là: C
Quan sát bảng biến thiên ta thấy hàm số đạt cực tiểu tại điểm x = 3 và giá trị cực tiểu của hàm số bằng – 4.
Bài 3 trang 13 Toán 12 Tập 1: Tìm các khoảng đơn điệu của mỗi hàm số sau:
a) y = – x3 + 2x2 – 3;
b) y = x4 + 2x2 + 5;
c) ;
d)
Lời giải:
a)
● Hàm số đã cho có tập xác định là ℝ.
● Ta có y' = – 3x2 + 4x;
y' = 0 ⇔ – 3x2 + 4x = 0 ⇔ x(3x – 4) = 0 ⇔ x = 0 hoặc x = .
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên khoảng và nghịch biến trên mỗi khoảng (– ∞; 0) và .
b) y = x4 + 2x2 + 5
● Hàm số đã cho có tập xác định là ℝ.
● Ta có y' = 4x2 + 4x;
y' = 0 ⇔ 4x2 + 4x = 0 ⇔ x(x + 1) = 0 ⇔ x = – 1 hoặc x = 0.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng (– ∞; – 1), (0; + ∞) và nghịch biến trên khoảng (– 1; 0).
c)
● Hàm số đã cho có tập xác định là ℝ\{2}.
● Ta có với x ≠ 2;
y' > 0 với mọi x ≠ 2.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng (– ∞; 2) và (2; + ∞).
d)
● Hàm số đã cho có tập xác định là ℝ\{– 1}.
● Ta có với x ≠ – 1;
y' = 0 ⇔ x2 + 2x – 2 = 0 ⇔ x = - 1 - hoặc x = -1 + .
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng và ; nghịch biến trên mỗi khoảng và .
Bài 4 trang 13 Toán 12 Tập 1: Tìm điểm cực trị của mỗi hàm số sau:
a) y = 2x3 + 3x2 – 36x – 10;
b) y = – x4 – 2x2 + 9;
c) .
Lời giải:
a)
● Hàm số đã cho có tập xác định là ℝ.
● Ta có y' = 6x2 + 6x – 36;
y' = 0 ⇔ 6x2 + 6x – 36 = 0 ⇔ x = – 3 hoặc x = 2.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đạt cực tiểu tại x = 2 và đạt cực đại tại x = – 3.
b) y = – x4 – 2x2 + 9
● Hàm số đã cho có tập xác định là ℝ.
● Ta có y' = – 4x3 – 4x;
y' = 0 ⇔ – 4x3 – 4x = 0 ⇔ x3 + x = 0 ⇔ x = 0.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đã cho đạt cực tiểu tại x = 0.
c)
● Hàm số đã cho có tập xác định là ℝ\{0}.
● Ta có y' = với x ≠ 0;
y' > 0 với mọi x ≠ 0.
Bảng biến thiên của hàm số như sau:
Vậy hàm số không có cực trị.
Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu của hàm số hay khác: