Giải Toán 12 trang 89 Tập 1 Chân trời sáng tạo
Với Giải Toán 12 trang 89 Tập 1 trong Bài 1: Vẽ đồ thị hàm số bằng phần mềm Geogebra Toán 12 Tập 1 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 89.
Giải Toán 12 trang 89 Tập 1 Chân trời sáng tạo
Thực hành 1 trang 89 Toán 12 Tập 1: Vẽ đồ thị các hàm số bậc ba sau:
a) y = x3; b) y = x3 – 3x;
c) y = −x3 + 3x; d) y = x3 – 3x + 2.
Lời giải:
a) y = x3
- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.
- Nhập hàm số y = x3 vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ
- Nhận xét:
Hàm số đồng biến trên khoảng (0; +∞) và nghịch biến trên khoảng (−∞; 0).
Hàm số đã cho không có cực trị.
Đồ thị có tâm đối xứng là (0; 0).
b) y = x3 – 3x
- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.
- Nhập hàm số y = x3 – 3x vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ
Nhận xét:
Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số nghịch biến trên khoảng (−1; 1).
Điểm cực đại là (−1; 2), điểm cực tiểu là (1; −2).
Đồ thị hàm số có tâm đối xứng là (0; 0).
c) y = −x3 + 3x
- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.
- Nhập hàm số y = −x3 + 3x vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ
Nhận xét:
Hàm số nghịch biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số đồng biến trên khoảng (−1; 1).
Điểm cực đại là (1; 2), điểm cực tiểu là (−1; −2).
Đồ thị hàm số có tâm đối xứng là (0; 0).
d) y = x3 – 3x + 2
- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.
- Nhập hàm số y = x3 – 3x + 2 vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ
Nhận xét:
Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số nghịch biến trên khoảng (−1; 1).
Điểm cực đại là (−1; 4), điểm cực tiểu là (1; 0).
Đồ thị hàm số có tâm đối xứng là (0; 2).
Thực hành 2 trang 89 Toán 12 Tập 1: Vẽ đồ thị các hàm số sau:
a) y = ; b) y = .
Lời giải:
a) y =
- Tạo các thanh trượt biểu thị các tham số a, b, c, d
- Nhập hàm số y = vào ô lệnh.
- Nhập phương trình hai đường tiệm cận x = 1; y = 1.
- Ta được đồ thị như hình vẽ
Nhận xét
Hàm số nghịch biến trên khoảng (−∞; 1) và (1; +∞).
Hàm số không có cực trị.
Đồ thị hàm số nhận x = 1 là tiệm cận đứng và y = 1 là tiệm cận ngang.
Tâm đối xứng của đồ thị hàm số là (1; 1).
b) y =
- Tạo các thanh trượt biểu thị các tham số a, b, c, d
- Nhập hàm số y = vào ô lệnh.
- Nhập phương trình hai đường tiệm cận x = 1; y = −1.
- Ta được đồ thị như hình vẽ
Nhận xét
Hàm số đồng biến trên khoảng (−∞; 1) và (1; +∞).
Hàm số không có cực trị.
Đồ thị hàm số nhận x = 1 là tiệm cận đứng và y = −1 là tiệm cận ngang.
Tâm đối xứng của đồ thị hàm số là (1; −1).