Bài 4.13 trang 18 Toán 12 Tập 2 - Kết nối tri thức


Giả sử vận tốc v của dòng máu ở khoảng cách r từ tâm của động mạch bán kính R không đổi, có thể được mô hình hóa bởi công thức v = k(R – r), trong đó k là một hằng số. Tìm vận tốc trung bình (đối với r) của động mạch trong khoảng 0 ≤ r ≤ R. So sánh vận tốc trung bình với vận tốc lớn nhất.

Giải Toán 12 Bài 12: Tích phân - Kết nối tri thức

Bài 4.13 trang 18 Toán 12 Tập 2: Giả sử vận tốc v của dòng máu ở khoảng cách r từ tâm của động mạch bán kính R không đổi, có thể được mô hình hóa bởi công thức v = k(R2 – r2), trong đó k là một hằng số. Tìm vận tốc trung bình (đối với r) của động mạch trong khoảng 0 ≤ r ≤ R. So sánh vận tốc trung bình với vận tốc lớn nhất.

Lời giải:

Vận tốc trung bình của động mạch là:

vtb=1R00Rvrdr=1R0RkR2r2dr=1RkR2rr330R=23kR2

Do đó, vận tốc trung bình của động mạch là 23kR2

Vì 0 ≤ r ≤ R nên vận tốc lớn nhất của động mạch là kR2 khi r = 0.

Do đó vtb=23vmax

Lời giải bài tập Toán 12 Bài 12: Tích phân hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: