HĐ2 trang 77 Toán 12 Kết nối tri thức Tập 1
Trong tình huống mở đầu, gọi y1, y2, …, y30 là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2022 (mẫu số liệu gốc).
Giải Toán 12 Bài 9: Khoảng biến thiên và khoảng tứ phân vị - Kết nối tri thức
HĐ2 trang 77 Toán 12 Tập 1: Trong tình huống mở đầu, gọi y1, y2, …, y30 là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2022 (mẫu số liệu gốc).
a) Có thể tính chính xác khoảng tứ phân vị của mẫu số liệu gốc hay không?
b) Tìm tứ phân vị thứ nhất Q1 và tứ phân vị thứ ba Q3 cho mẫu số liệu ghép nhóm.
c) Hãy đưa ra một giá trị xấp xỉ cho khoảng tứ phân vị của mẫu số liệu gốc.
Lời giải:
a) Để tính chính xác khoảng tứ phân vị của mẫu số liệu gốc, chúng ta cần biết giá trị cụ thể của từng ngày trong tháng Sáu năm 2022. Tuy nhiên, do không có dữ liệu cụ thể, nên không thể tính chính xác khoảng tứ phân vị.
b) Ta có cỡ mẫu là n = 30.
Giả sử y1, y2, …, y30 là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2022 được sắp xếp theo thứ tự tăng dần.
Ta có tứ phân vị thứ nhất của mẫu số liệu gốc là y8 thuộc nhóm [32; 34) nên nhóm chứa tứ phân vị thứ nhất là [32; 34).
Ta có .
Tứ phân vị thứ ba của mẫu số liệu gốc là y23 thuộc nhóm [36; 38) nên nhóm chứa tứ phân vị thứ ba là [36; 38).
Ta có .
c) DQ = 36,625 – 33,25 = 3,375.
Lời giải bài tập Toán 12 Bài 9: Khoảng biến thiên và khoảng tứ phân vị hay, chi tiết khác: