Cho tam giác ABC. Hai đường trung tuyến AM và CN cắt nhau tại G. Trên tia đối của tia MA lấy điểm E sao cho ME = MG
Câu hỏi:
Cho tam giác ABC. Hai đường trung tuyến AM và CN cắt nhau tại G. Trên tia đối của tia MA lấy điểm E sao cho ME = MG.
a) Chứng minh rằng BG song song với EC.
b) Gọi I là giao điểm của BM và CN, đường thẳng AI cắt BC tại H. Chứng minh H là trung điểm của BC.
Trả lời:
a) Do AM là đường trung tuyến của tam giác ABC nên M là trung điểm của BC.
Do đó BM = CM.
Xét DBMG và DCME có:
BM = CM (chứng minh trên).
(đối đỉnh).
MG = ME (theo giả thiết).
Do đó DBMG = DCME (c.g.c).
Suy ra (2 góc tương ứng).
Mà hai góc này ở vị trí so le trong nên BG // EC.
b) Do G là trọng tâm của tam giác ABC nên AG = 2GM.
Lại có ME = GM và G, M, E thẳng hàng nên GE = GM + ME = 2GM.
Suy ra AG = GE.
Do đó G là trung điểm của AE.
Tam giác ABE có hai đường trung tuyến AI và BG cắt nhau tại F nên F là trọng tâm của tam giác ABE.
Do đó AF = 2FI.