X

Giải Toán lớp 7 Kết nối tri thức

Một tam giác có gì đặc biệt nếu thỏa mãn một trong các điều kiện sau: a) Tam giác có ba góc bằng nhau. b) Tam giác cân có một góc bằng 60o


Câu hỏi:

Một tam giác có gì đặc biệt nếu thỏa mãn một trong các điều kiện sau:

a) Tam giác có ba góc bằng nhau.

b) Tam giác cân có một góc bằng 60o.

Trả lời:

a)

 Một tam giác có gì đặc biệt nếu thỏa mãn một trong các điều kiện sau: a) Tam giác có ba góc bằng nhau. b) Tam giác cân có một góc bằng 60o (ảnh 1)

Xét tam giác ABC có A^=B^ nên tam giác ABC cân tại C.

Do đó AC = BC (1).

Xét tam giác ABC có B^=C^ nên tam giác ABC cân tại A.

Do đó AB = AC (2).

Từ (1) và (2) có AB = BC = AC.

Lại có A^=B^=C^ nên tam giác ABC là tam giác đều.

Vậy tam giác có ba góc bằng nhau là tam giác đều.

b)

Trường hợp 1. Xét góc 60o là góc ở đỉnh.

Một tam giác có gì đặc biệt nếu thỏa mãn một trong các điều kiện sau: a) Tam giác có ba góc bằng nhau. b) Tam giác cân có một góc bằng 60o (ảnh 2)

Tam giác ABC cân tại A nên B^=C^.

Do đó B^+C^=2B^.

Xét tam giác ABC có A^+B^+C^=180°.

Khi đó A^+2B^=180°.

Do đó 2B^=180°A^=180°60°=120°.

Do đó B^=C^=60°.

Tam giác ABC có A^=B^=60° nên tam giác ABC cân tại C.

Do đó AC = BC.

Mà AB = AC nên AB = BC = AC.

Lại có A^=B^=C^ nên tam giác ABC là tam giác đều.

Trường hợp 2. Xét góc 60o là góc ở đáy.

Một tam giác có gì đặc biệt nếu thỏa mãn một trong các điều kiện sau: a) Tam giác có ba góc bằng nhau. b) Tam giác cân có một góc bằng 60o (ảnh 3)

Tam giác ABC cân tại A nên B^=C^.

Do đó C^=60°.

Xét tam giác ABC có A^+B^+C^=180°.

Do đó A^=180°B^C^=180°60°60°=60°.

Tam giác ABC có A^=B^ nên tam giác ABC cân tại C.

Do đó AC = BC.

Mà AB = AC nên AB = BC = AC.

Lại có A^=B^=C^ nên tam giác ABC là tam giác đều.

Từ hai trường hợp trên ta thấy tam giác cân có một góc bằng 60o là tam giác đều.

Vậy tam giác cân có một góc bằng 60o là tam giác đều.

Xem thêm lời giải bài tập Toán 7 Kết nối tri thức hay, chi tiết:

Câu 1:

Kiến trúc sư vẽ bản thiết kế ngôi nhà hình tam giác theo tỉ lệ 1 : 100. Biết rằng ngôi nhà cao 5 m, bề ngang mặt sàn rộng 4 m và hai mái nghiêng như nhau. Theo em, bản thiết kế làm thế nào để xác định được chính xác điểm C thể hiện đỉnh ngôi nhà?

Kiến trúc sư vẽ bản thiết kế ngôi nhà hình tam giác theo tỉ lệ 1 : 100. Biết rằng ngôi nhà cao 5 m, bề ngang mặt sàn rộng (ảnh 1)

Xem lời giải »


Câu 2:

Hãy nêu tên tất cả các tam giác cân trong Hình 4.59. Với mỗi tam giác cân đó, hãy nêu tên cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của chúng.

Hãy nêu tên tất cả các tam giác cân trong Hình 4.59. Với mỗi tam giác cân đó, hãy nêu tên cạnh bên, cạnh đáy, góc ở đỉnh (ảnh 1)

Xem lời giải »


Câu 3:

Quan sát tam giác ABC cân tại A như Hình 4.60. Lấy D là trung điểm của đoạn thẳng BC.

a) Chứng minh rằng ΔABD=ΔACD theo trường hợp cạnh – cạnh – cạnh.

b) Hai góc B và C của tam giác ABC có bằng nhau không?

Quan sát tam giác ABC cân tại A như Hình 4.60. Lấy D là trung điểm của đoạn thẳng BC (ảnh 1)

Xem lời giải »


Câu 4:

Cho tam giác MNP có M^=N^. Vẽ tia phân giác PK của góc MNP (KMN).

Chứng minh rằng:

a) MKP^=NKP^;                                  b) ΔMPK=ΔNPK;

c) Tam giác MNP có cân tại P không?

Cho tam giác MNP có góc M = góc N. Vẽ tia phân giác PK của tam giác MNP (ảnh 1)

Xem lời giải »


Câu 5:

Đánh dấu hai điểm A và B nằm trên hai mép tờ giấy A4, nối A và B để được đoạn thẳng AB.

Gấp mảnh giấy lại như Hình 4.63 sao cho vị trí các điểm A và B trùng nhau.

Mở mảnh giấy ra, kẻ đường thẳng d theo nếp gấp.

a) Gọi O là giao điểm của đường thẳng d và AB. O có là trung điểm của đoạn thẳng AB không?

b) Dùng thước đo góc, kiểm tra đường thẳng d có vuông góc với AB không?

Đánh dấu hai điểm A và B nằm trên hai mép tờ giấy A4, nối A và B để được đoạn thẳng AB.  Gấp mảnh giấy lại như Hình (ảnh 1)

Xem lời giải »


Câu 6:

Trong Hình 4.64, bạn Lan vẽ đường trung trực của các đoạn thẳng. Theo em, hình nào Lan vẽ đúng?

Trong Hình 4.64, bạn Lan vẽ đường trung trực của các đoạn thẳng. Theo em, hình nào Lan vẽ đúng (ảnh 1)

Xem lời giải »


Câu 7:

Trên mảnh giấy trong Hoạt động 3, lấy điểm M bất kì trên đường thẳng d. Dùng thước thẳng có vạch chia kiểm tra xem AM có bằng BM không (H.4.65).

Trên mảnh giấy trong Hoạt động 3, lấy điểm M bất kì trên đường thẳng d. Dùng thước thẳng có vạch chia kiểm tra xem (ảnh 1)

Xem lời giải »


Câu 8:

Cho M là một điểm nằm trên đường trung trực của đoạn thẳng AB. Biết AM = 3 cm và MAB^=60° (H.4.67). Tính BM và số đo góc MBA.

Cho M là một điểm nằm trên đường trung trực của đoạn thẳng AB. Biết AM = 3 cm và (ảnh 1)

Xem lời giải »