X

Giải Toán lớp 7 Kết nối tri thức

Quay trở lại tình huống mở đầu, ta thấy mỗi chiếc cột với bóng của nó tạo thành hai cạnh góc vuông của một tam


Câu hỏi:

Quay trở lại tình huống mở đầu, ta thấy mỗi chiếc cột với bóng của nó tạo thành hai cạnh góc vuông của một tam giác vuông. Hai tam giác vuông này có hai cặp cạnh tương ứng bằng nhau và hai góc ở đỉnh chiếc cột của hai tam giác này cũng bằng nhau. Vậy lí do mà bạn Tròn đưa ra có đúng không?

Trả lời:

Quay trở lại tình huống mở đầu, ta thấy mỗi chiếc cột với bóng của nó tạo thành hai cạnh góc vuông của một tam (ảnh 1)

Gọi hai tam giác vuông này lần lượt là ABC (vuông tại A) và A'B'C' (vuông tại A') trong đó AB và A'B' lần lượt là hai chiếc cột, góc B và góc B' là góc tạo bởi tia nắng mặt trời với hai cột.

Khi đó ta có AB=A'B',B^=B'^.

Xét hai tam giác ABC và A'B'C' có:

ABC^=A'B'C'^ (theo giả thiết).

AB=A'B' (theo giả thiết).

BAC^=B'A'C'^ (cùng bằng 90o).

Do đó ΔABC=ΔA'B'C' (g – c – g).

Khi đó AC=A'C' (2 cạnh tương ứng) hay bóng của hai chiếc cột bằng nhau.

Vậy bạn Tròn nói đúng.

Xem thêm lời giải bài tập Toán 7 Kết nối tri thức hay, chi tiết:

Câu 1:

Quan sát hai chiếc cột dựng thẳng đứng, cạnh nhau và cao bằng nhau. Vì Mặt Trời ở rất xa Trái Đất, nên vào buổi chiều các tia nắng Mặt Trời tạo với hai chiếc cột các góc xem như bằng nhau.

Bạn Vuông: Tớ thấy bóng hai chiếc cột dài bằng nhau, vì sao vậy nhỉ?

Bạn Tròn: Đấy là do hai chiếc cột cao bằng nhau đấy!

Lí do mà bạn Tròn đưa ra như vậy có đúng không? Qua bài học này, các em sẽ có câu trả lời cho câu hỏi trên.

Quan sát hai chiếc cột dựng thẳng đứng, cạnh nhau và cao bằng nhau. Vì Mặt Trời ở rất xa Trái Đất, nên vào buổi chiều (ảnh 1)

Xem lời giải »


Câu 2:

Hai tam giác vuông ABC (vuông tại đỉnh A) và A'B'C' (vuông tại đỉnh A') có các cặp cạnh góc vuông bằng nhau: AB=A'B',AC=A'C' (H.4.45).

Dựa vào trường hợp bằng nhau cạnh – góc – cạnh của hai tam giác, hãy giải thích vì sao hai tam giác vuông ABC và A'B'C' bằng nhau.

Hai tam giác vuông ABC (vuông tại đỉnh A) và A'B'C'  (vuông tại đỉnh A') có các cặp cạnh góc vuông bằng nhau (ảnh 1)

Xem lời giải »


Câu 3:

Hai tam giác vuông ABC (vuông tại đỉnh A) và A'B'C' (vuông tại đỉnh A') có tương ứng một cạnh góc vuông và một góc nhọn kề với cạnh ấy bằng nhau: AB=A'B',B^=B'^ (H.4.46).

Dựa vào trường hợp bằng nhau góc – cạnh – góc của hai tam giác, hãy giải thích vì sao hai tam giác vuông ABC và A'B'C' bằng nhau.

Hai tam giác vuông ABC (vuông tại đỉnh A) và A'B'C' (vuông tại đỉnh A') có tương ứng một cạnh góc vuông và một góc nhọn kề (ảnh 1)

Xem lời giải »


Câu 4:

Hình 4.47 mô phỏng chiều dài và độ dốc của hai con dốc bởi các đường thẳng BC, B'C' và các góc B, B' Khi đó AC, A'C' mô tả độ cao của hai con dốc.

a) Dựa vào trường hợp bằng nhau góc – cạnh – góc của hai tam giác, hãy giải thích vì sao hai tam giác vuông ABC và A'B'C' bằng nhau.

b) So sánh độ cao của hai con dốc.

Hình 4.47 mô phỏng chiều dài và độ dốc của hai con dốc bởi các đường thẳng BC (ảnh 1)

Xem lời giải »


Câu 5:

Trong Hình 4.48, hãy tìm các cặp tam giác vuông bằng nhau và giải thích vì sao chúng bằng nhau.

Trong Hình 4.48, hãy tìm các cặp tam giác vuông bằng nhau và giải thích vì sao chúng bằng nhau (ảnh 1)

Xem lời giải »


Câu 6:

Cho Oz là tia phân giác của góc xOy. Lấy điểm M trên tia Oz và hai điểm A, B lần lượt trên các tia Ox, Oy sao cho MA vuông góc với Ox, MB vuông góc với Oy (H.4.50). Chứng minh rằng MA = MB.

Cho Oz là tia phân giác của góc xOy. Lấy điểm M trên tia Oz và hai điểm A, B lần lượt trên các tia Ox, Oy sao cho MA (ảnh 1)

Xem lời giải »


Câu 7:

Vẽ tam giác vuông ABC có A^=90°, AB = 3 cm, BC = 5 cm theo các bước sau:

- Dùng thước thẳng có vạch chia vẽ đoạn thẳng AB = 3 cm.

- Vẽ tia Ax vuông góc với AB và cung tròn tâm B bán kính 5 cm như Hình 4.51.

Cung tròn cắt tia Ax tại điểm C.

- Vẽ đoạn thẳng BC ta được tam giác ABC.

Vẽ tam giác vuông ABC có góc A = 90 độ, AB = 3 cm, BC = 5 cm theo các bước sau:  - Dùng thước thẳng có vạch chia vẽ đoạn thẳng AB = 3 cm (ảnh 1)

Xem lời giải »