Bài 2 trang 57 Toán 8 Tập 2 Cánh diều
Cho hình thang ABCD (AB // CD) có AB = 4 cm, CD = 6 cm. Đường thẳng d song song với hai đáy và cắt hai cạnh bên AD, BC của hình thang đó lần lượt tại M, N; cắt đường chéo AC tại P.
Giải Toán 8 Bài 1: Định lí Thalès trong tam giác - Cánh diều
Bài 2 trang 57 Toán 8 Tập 2: Cho hình thang ABCD (AB // CD) có AB = 4 cm, CD = 6 cm. Đường thẳng d song song với hai đáy và cắt hai cạnh bên AD, BC của hình thang đó lần lượt tại M, N; cắt đường chéo AC tại P.
a) Chứng minh
b) Tính độ dài các đoạn thẳng MP, PN, MN; biết rằng MD = 2MA.
Lời giải:
a) Do d // CD, mà M, N, P ∈ d nên MP // CD, PN // CD, MN // CD
Do ABCD là hình thang nên AB // CD, do đó PN // AB
Xét ∆ADC với MP // CD, ta có (định lí Thalès) (1)
Xét ∆ABC với PN // AB, ta có (định lí Thalès) (2)
Từ (1) và (2) suy ra
b) ⦁Do MD = 2MA nên
Suy ra hay
⦁Xét ∆ADC với MP // CD, ta có (hệ quả định lí Thalès)
Suy ra Do đó
⦁ Tương tự, xét ∆ABC vớiPN // AB, ta có (hệ quả định lí Thalès)
Mà hay do đó nên
Khi đó nên
Ta có:
Lời giải bài tập Toán 8 Bài 1: Định lí Thalès trong tam giác hay, chi tiết khác:
Khởi động trang 52 Toán 8 Tập 2: Bác Dư muốn cắt một thanh sắt (Hình 1) thành 5 phần bằng nhau ....
Luyện tập 1 trang 53 Toán 8 Tập 2: Trong Hình 4, chứng tỏ rằng nếu MN // BC thì MB/AB = NC/AC ....
Hoạt động 3 trang 54 Toán 8 Tập 2: Trong Hình 7, cho AM = 1, MB = 2, AN = 1,5, NC = 3 ....