X

Giải Toán 8 Cánh diều

Luyện tập 3 trang 55 Toán 8 Tập 2 Cánh diều


Cho tam giác ABC vuông tại A có CA = 4, CB = 5. Giả sử M, N là hai điểm lần lượt nằm trên hai cạnh CA, CB sao cho CM = 1, CN = 1,25. Tính độ dài đoạn thẳng MN.

Giải Toán 8 Bài 1: Định lí Thalès trong tam giác - Cánh diều

Luyện tập 3 trang 55 Toán 8 Tập 2: Cho tam giác ABC vuông tại A có CA = 4, CB = 5. Giả sử M, N là hai điểm lần lượt nằm trên hai cạnh CA, CB sao cho CM = 1, CN = 1,25. Tính độ dài đoạn thẳng MN.

Lời giải:

Luyện tập 3 trang 55 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Ta có: CNCB=1,255=14 và CMCA=14.

Do đó, CNCB=CMCA  =14.

Trong ∆ABC, có CNCB=CMCA

Suy ra MN // AB (định lí Thalès đảo)

Mà AB ⊥ AC (do tam giác ABC vuông tại A) nên MN ⊥ AC tại M.

Xét ∆MNC vuông tại M có:CN2 = CM2+ MN2(định lí Pythagore)

Suy ra, MN=CN2CM2=1,25212=0,75cm.

Lời giải bài tập Toán 8 Bài 1: Định lí Thalès trong tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác: