Bài 2 trang 89 Toán 9 Tập 2 Cánh diều


Cho hình ngũ giác đều ABCDE có tâm O (Hình 31).

Giải Toán 9 Bài 2: Phép quay - Cánh diều

Bài 2 trang 89 Toán 9 Tập 2: Cho hình ngũ giác đều ABCDE có tâm O (Hình 31).

Bài 2 trang 89 Toán 9 Tập 2 Cánh diều | Giải Toán 9

a) Phép quay ngược chiều tâm O biến điểm A thành điểm E thì các điểm B, C, D, E tương ứng biến thành các điểm nào?

b) Chỉ ra các phép quay tâm O giữ nguyên hình ngũ giác đều đã cho.

Lời giải:

a) Vì ngũ giác đều ABCDE có tâm O nên OA = OB = OC = OD = OE.

Vì ABCDE là ngũ giác đều nên AB = BC = CD = DE = EA.

Xét ∆OAB và ∆OBC có:

OA = OB, OB = OC, AB = BC.

Do đó ∆OAB = ∆OBC (c.c.c).

Chứng minh tương tự ta có

∆OAB = ∆OBC = ∆COD = ∆DOE = ∆EOA.

Suy ra AOB^=BOC^=COD^=DOE^=EOA^.

Mà AOB^+BOC^+COD^+DOE^+EOA^=360°

Do đó 5AOB^=360°

Suy ra AOB^=BOC^=COD^=DOE^=EOA^=360°5=72°.

Như vậy, phép quay ngược chiều 72° tâm O giữ nguyên điểm O, biến điểm A thành điểm E thuộc đường tròn (O; OA) sao cho tia OA quay ngược chiều kim đồng hồ đến tia OE, điểm A tạo nên cung AE có số đo 72°.

Khi đó, phép quay ngược chiều 72° tâm O biến các điểm B, C, D, E tương ứng thành các điểm A, B, C, D.

b) Các phép quay giữ nguyên hình ngũ giác đều ABCDE là:

⦁ Năm phép quay thuận chiều α° tâm O với α° lần lượt nhận các giá trị 72°; 144°; 216°; 288°; 360°.

⦁ Năm phép quay ngược chiều α° tâm O với α° lần lượt nhận các giá trị 72°; 144°; 216°; 288°; 360°.

Lời giải bài tập Toán 9 Bài 2: Phép quay hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác: