Bài 9.15 trang 79 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9
Cho tam giác đều ABC có cạnh bằng 3 cm và nội tiếp đường tròn (O) như Hình 9.26.
Giải Toán 9 Luyện tập chung - Kết nối tri thức
Bài 9.15 trang 79 Toán 9 Tập 2: Cho tam giác đều ABC có cạnh bằng 3 cm và nội tiếp đường tròn (O) như Hình 9.26.
a) Tính bán kính R của đường tròn (O).
b) Tính diện tích hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC.
Lời giải:
a) Đường tròn (O) ngoại tiếp tam giác đều ABC nên có bán kính là
b)
Do ∆ABC là tam giác đều nên
Xét đường tròn (O) có lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung BC nên suy ra
Do đó cung nhỏ BC có số đo bằng 120°.
Diện tích hình quạt tròn bán kính ứng với cung nhỏ BC có số đo bằng 120° là:
Gọi H là giao điểm của AO và BC. Khi đó AH vừa là đường trung trực, vừa là đường phân giác, cũng là đường cao của tam giác.
Vì BO là phân giác của góc ABC nên
Xét ∆OBH vuông tại H, có:
Diện tích của tam giác OBC là:
Gọi S là diện tích viên phân giới hạn bởi dây cung BC và cung nhỏ BC.
Ta có:
Vậy hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC có diện tích bằng
Lời giải bài tập Toán 9 Luyện tập chung hay, chi tiết khác: