X

Toán 9 Kết nối tri thức

Giải Toán 9 trang 89 Tập 2 Kết nối tri thức


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 9 trang 89 Tập 2 trong Bài 30: Đa giác đều Toán 9 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 89.

Giải Toán 9 trang 89 Tập 2 Kết nối tri thức

Thử thách nhỏ 2 trang 89 Toán 9 Tập 2: Hãy liệt kê 6 phép quay giữ nguyên một lục giác đều nội tiếp một đường tròn (O).

Lời giải:

Giả sử lục giác đều ABCDEF nội tiếp đường tròn (O) (hình vẽ).

Thử thách nhỏ 2 trang 89 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì lục giác ABCDEF nội tiếp đường tròn (O) nên OA = OB = OC = OD = OE = OF.

Vì ABCDEF là lục giác đều nên AB = BC = CD = DE = EF = FA.

Xét ∆OAB và ∆OBC có:

OA = OB, OB = OC, AB = BC.

Do đó ∆OAB = ∆OBC (c.c.c).

Chứng minh tương tự ta có

∆OAB = ∆OBC = ∆COD = ∆DOE = ∆EOF = ∆FOA.

Suy ra AOB^=BOC^=COD^=DOE^=EOF^=FOA^.

AOB^+BOC^+COD^+DOE^+EOF^+FOA^=360°

Do đó 6AOB^=360°

Suy ra AOB^=BOC^=COD^=DOE^=EOF^=FOA^=360°6=60°.

Khi đó phép quay ngược chiều 72° tâm O giữ nguyên điểm O, biến điểm A thành điểm B thuộc đường tròn (O; OA) sao cho tia OA quay ngược chiều kim đồng hồ đến tia OB, điểm A tạo nên cung AB có số đo 60°.

Vậy mỗi phép quay thuận chiều 60° tâm O ở mỗi đỉnh A, B, C, D, E, F sẽ giữ nguyên lục giác đều nội tiếp đường tròn tâm O.

Bài 9.24 trang 89 Toán 9 Tập 2: Trong các hình phẳng sau (H.9.52), hình nào là hình phẳng có dạng đa giác đều?

Bài 9.24 trang 89 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Hình b là hình vuông, hình d là hình lục giác đều vì hai hình đều có các cạnh bằng nhau và các góc bằng nhau.

Bài 9.25 trang 89 Toán 9 Tập 2: Trong các hình dưới đây (H.9.53), hình nào vẽ hai điểm M và N thỏa mãn phép quay thuận chiều 60° tâm O biến điểm M thành điểm N?

Bài 9.25 trang 89 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Phép quay thuận chiều 60° tâm O biến điểm M thành điểm N tức là điểm N thuộc đường tròn (O; OM) sao cho tia OM quay thuận kim đồng hồ đến tia ON và điểm M tạo nên cung MN có số đo là 60°.

Trong các hình đã cho, hình d là hình cần tìm.

Bài 9.26 trang 89 Toán 9 Tập 2: Cho tam giác đều ABC nội tiếp đường tròn (O) bán kính 2 cm. Tính độ dài các cạnh của tam giác ABC.

Lời giải:

Bài 9.26 trang 89 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì tam giác đều ABC nội tiếp đường tròn (O) bán kính 2 cm nên ta có OA = OB = OC = 2 cm.

Vì ABC là tam giác đều nên tâm O của đường tròn ngoại tiếp tam giác là trọng tâm của tam giác.

Gọi H là giao điểm của AO và BC. Khi đó AH vừa là đường trung trực, vừa đường cao, vừa là đường trung tuyến của tam giác.

Do đó AO=23AH suy ra AH=32AO=322=3 (cm).

Vì ∆ABC đều nên ABC^=60°.

Xét ∆ABH vuông tại H, ta có:

BH=AHtanABH^=3tan60°=33=3 (cm).

Vì AH là đường trung tuyến của ∆ABC nên H là trung điểm của BC, do đó BC = 2BH = 23 (cm)

Vậy các cạnh của tam giác ABC có độ dài bằng 23 cm.

Bài 9.27 trang 89 Toán 9 Tập 2: Cho hình thoi ABCD có A^=60°. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng MBNPDQ là lục giác đều.

Lời giải:

Bài 9.27 trang 89 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

⦁ Vì ABCD là hình thoi nên AB = BC = CD = DA.

Vì M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA nên MA = MB = 12AB; NB = NC = 12BC; PC = PD = 12CD; QD = QA = 12DA.

Do đó AM = MB = NB = NC = PC = PD = QD = QA = 12AB. (1)

Xét ∆ABD có AB = AD nên ∆ABD cân tại A, lại có A^=60° nên ∆ABD là tam giác đều. Do đó AB = BD (2) và ABD^=ADB^=60°.

Lại có M, Q là lần lượt là trung điểm của AB, AD nên MQ là đường trung bình của tam giác. Do đó MQ // BD và MQ = 12BD. (3)

Chứng minh tương tự, ta cũng có NP = 12BD. (4)

Từ (1), (2), (3) và (4) suy ra MB = BN = NP = PD = DQ = QM.

⦁ Vì MQ // BD nên AMQ^=ABD^=60° (so le trong).

AMQ^+BMQ^=180° (hai góc kề bù)

Suy ra BMQ^=180°AMQ^=180°60°=120°.

Tương tự, ta có BNP^=NPD^=DQM^=120°.

Tam giác BCD có BC = CD và C^=A^=60° (tính chất hình thoi) nên ∆BCD là tam giác đều. Do đó CBD^=CDB^=60°.

Ta có ABC^=ABD^+CBD^=60°+60°=120°;

ADC^=ADB^+CDB^=60°+60°=120°.

Khi đó, MBN^=BNP^=NPD^=PDQ^=DQM^=120°.

Như vậy MBNPDQ có các cạnh bằng nhau và các góc bằng nhau.

Vậy MBNPDQ là lục giác đều.

Bài 9.28 trang 89 Toán 9 Tập 2: Cho tam giác đều ABC nội tiếp đường tròn (O) như Hình 9.54. Phép quay ngược chiều 60° tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F. Chứng minh rằng ADBECF là một lục giác đều.

Bài 9.28 trang 89 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Bài 9.28 trang 89 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

⦁ Vì ∆ABC là tam giác đều nên BAC^=ABC^=ACB^=60°.

Xét đường tròn (O) có ACB^, AOB^ lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung AB nên ACB^=12AOB^, suy ra AOB^=2ACB^=260°=120°.

⦁ Vì phép quay ngược chiều 60° tâm O biến điểm A thành các điểm D nên điểm D nằm trên đường tròn (O; OA) sao cho tia OA quay ngược chiều kim đồng hồ đến tia OD thì điểm A tạo nên cung AD có số đo 60°.

Khi đó ta có OA = OD và AOD^=60° nên ∆OAD là tam giác đều.

Suy ra AD = OA = OD và ODA^=60°. 1

⦁ Mặt khác, AOB^=AOD^+BOD^ (hai góc kề nhau)

Nên BOD^=AOB^AOD^=120°60°=60°.

Xét ∆BOD có OB = OD (cùng bằng OA) và BOD^=60° nên ∆BOD là tam giác đều.

Do đó BD = OB = OD và ODB^=60°. 2

Từ (1) và (2) ta có AD = DB và ADB^=ODA^+ODB^=60°+60°=120°.

Tương tự, ta sẽ chứng minh được:

AD = DB = BE = EC = CF = FA và ADB^=DBE^=BEC^=ECF^=CFA^=FAD^=120°.

Vậy ADBECF có các cạnh bằng nhau và các góc đều bằng 120° nên là một lục giác đều.

Bài 9.29 trang 89 Toán 9 Tập 2: Liệt kê năm phép quay giữ nguyên một ngũ giác đều nội tiếp một đường tròn tâm O.

Lời giải:

Giả sử ABCDE là ngũ giác đều nội tiếp đường tròn (O) (hình vẽ).

Bài 9.29 trang 89 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì ngũ giác ABCDE nội tiếp đường tròn (O) nên OA = OB = OC = OD = OE.

Vì ABCDE là ngũ giác đều nên AB = BC = CD = DE = EA.

Xét ∆OAB và ∆OBC có:

OA = OB, OB = OC, AB = BC.

Do đó ∆OAB = ∆OBC (c.c.c).

Chứng minh tương tự ta có

∆OAB = ∆OBC = ∆COD = ∆DOE = ∆EOA.

Suy ra AOB^=BOC^=COD^=DOE^=EOA^.

AOB^+BOC^+COD^+DOE^+EOA^=360°

Do đó 5AOB^=360°

Suy ra AOB^=BOC^=COD^=DOE^=EOA^=360°5=72°.

Khi đó phép quay ngược chiều 72° tâm O giữ nguyên điểm O, biến điểm A thành điểm B thuộc đường tròn (O; OA) sao cho tia OA quay ngược chiều kim đồng hồ đến tia OB, điểm A tạo nên cung AB có số đo 72°.

Vậy mỗi phép quay ngược chiều 72° tâm O ở mỗi đỉnh A, B, C, D, E sẽ giữ nguyên ngũ giác đều nội tiếp một đường tròn tâm O.

Bài 9.30 trang 89 Toán 9 Tập 2: Cho vòng quay mặt trời gồm tám cabin như Hình 9.55. Hỏi để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều quay của kim đồng hồ quanh tâm bao nhiêu độ?

Bài 9.30 trang 89 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Giả sử 8 cabin tạo thành một bát giác đều ABCDEGHK nội tiếp đường tròn (O) (hình vẽ).

Bài 9.30 trang 89 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì bát giác ABCDEGHK nội tiếp đường tròn (O) nên OA = OB = OC = OD = OE = OG = OH = OK.

Vì ABCDEGHK là ngũ giác đều nên AB = BC = CD = DE = EG = GH = HK = KA.

Xét ∆OAB và ∆OBC có:

OA = OB, OB = OC, AB = BC.

Do đó ∆OAB = ∆OBC (c.c.c).

Chứng minh tương tự ta có

∆OAB = ∆OBC = ∆COD = ∆DOE = ∆EOG = ∆GOH = ∆HOK = ∆KOA.

Suy ra AOB^=BOC^=COD^=DOE^=EOG^=GOH^=HOK^=KOA^.

AOB^+BOC^+COD^+DOE^+EOG^+GOH^+HOK^+KOA^=360°

Do đó 8AOB^=360°

Suy ra AOB^=BOC^=COD^=DOE^=EOG^=GOH^=HOK^=KOA^=360°8=45°.

Khi đó AOG^=AOK^+KOH^+HOG^=45°+45°+45°=135°.

Để cabin A di chuyển đến vị trí cao nhất (vị trí của cabin G ban đầu) thì tia OA quay thuận chiều kim đồng hồ đến tia OG, điểm A tạo nên cung AG có số đo 135°.

Vậy để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm có số đo là 135°.

Lời giải bài tập Toán 9 Bài 30: Đa giác đều hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: