X

VTH Toán 7 Kết nối tri thức

Giải Vở thực hành Toán 7 trang 69 Tập 2 Kết nối tri thức


Với Giải VTH Toán 7 trang 69 Tập 2 trong Bài 32: Quan hệ giữa đường vuông góc và đường xiên Vở thực hành Toán lớp 7 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong VTH Toán 7 trang 69.

Giải Vở thực hành Toán 7 trang 69 Tập 2 Kết nối tri thức

Câu 1 trang 69 vở thực hành Toán lớp 7 Tập 2: Cho tam giác ABC có đường cao AH. Khi đó:

A. AC < AH;

B. AH > AB;

C. AH < AC;

D. Nếu B^<C^ thì AC > AB.

Lời giải:

Đáp án đúng là: C

Cho tam giác ABC có đường cao AH. Khi đó

Tam giác ABC có đường cao AH nên AH là đường vuông góc kẻ từ A đến BC và AB, AC là các đường xiên kẻ từ A đến BC.

Do đó, AB > Ah, AC > AH, vậy đáp án A, B sai và đáp án C đúng.

Ta có B^<C^ thì AC < AB nên đáp án D sai.

Câu 2 trang 69 vở thực hành Toán lớp 7 Tập 2: Cho Hình 9.5, kết luận nào sau đây là đúng?

Cho Hình 9.5, kết luận nào sau đây là đúng? AH = AM; HM + MN > AN

A. AH = AM;

B. HM + MN > AN;

C. HM > AM;

D. AH < AN.

Lời giải:

Đáp án đúng là: D

Do AH vuông góc với đường thẳng MN tại H nên AH là đường vuông góc kẻ từ A đến MN và AM, AN là các đường xiên kẻ từ A đến MN.

Suy ra AH < AM, AH < AN. Vậy đáp án D đúng.

Bài 1 (9.7) trang 69 vở thực hành Toán lớp 7 Tập 2: Cho hình vuông ABCD. Hỏi trong bốn đỉnh của hình vuông.

a) Đỉnh nào cách đều hai điểm A và C?

b) Đỉnh nào cách đều hai đường thẳng AB và AD?

Lời giải:

Cho hình vuông ABCD. Hỏi trong bốn đỉnh của hình vuông.Đỉnh nào cách đều hai điểm A và C

a) Ta có AB = AD và CB = CD nên hai đỉnh B và D cách đều hai điểm A và C.

b) • Ta có CB ⊥ AB nên CB là khoảng cách từ C đến AB. Tương tự do CD ⊥ AD nên CD là khoảng cách từ C đến AD. Mặt khác ta có CB = CD. Vậy C là một điểm cách đều hai đường thẳng AB và AD.

• Vì điểm A nằm trên hai đường thẳng AB và AD nên khoảng cách từ A đến hai đường thẳng ấy bằng nhau. Vậy A cũng là một điểm cách đều hai đường thẳng AB và AD.

Bài 2 (9.8) trang 69 vở thực hành Toán lớp 7 Tập 2: Cho tam giác cân ABC, AB = AC. Lấy điểm M tùy ý nằm giữa B và C (H.9.7).

Cho tam giác cân ABC, AB = AC. Lấy điểm M tùy ý nằm giữa B và C (H.9.7)

a) Khi M thay đổi thì độ dài AM thay đổi. Xác định vị trí của điểm M để độ dài AM nhỏ nhất.

b) Chứng minh rằng với mọi điểm M thì AM < AB.

Lời giải:

a) Kẻ đường cao AH của tam giác ABC, ta có AH là đường vuông góc hạ từ điểm A xuống BC. Gọi M là điểm tùy ý nằm giữa B và C. Nếu M khác H thì AM là đường xiên kẻ từ A đến BC. Do đó theo định lí, AH < AM. Vậy AM nhỏ nhất bằng AH khi M trùng H.

b) M là một điểm nằm giữa B và C. Ta cần chứng minh AM < AB. Muốn vậy, ta xét các trường hợp sau:

Trường hợp 1: Nếu AMB^=90°, thì AM là đường vuông góc, còn AB là đường xiên kẻ từ A xuống BC theo định lí về đường vuông góc và đường xiên, ta có AM < AB.

Trường hợp 2: Nếu AMB^ là góc tù thì trong tam giác AMB, góc AMB lớn nhất nên AM < AB.

Trường hợp 3: Nếu AMB^ là góc nhọn thì góc AMC kề bù với nó nên AMC^ là góc tù.

Trong tam giác AMC, góc AMC lớn nhất. Do đó AM < AC = AB.

Lời giải Vở thực hành Toán lớp 7 Bài 32: Quan hệ giữa đường vuông góc và đường xiên Kết nối tri thức hay khác:

Xem thêm lời giải Vở thực hành Toán lớp 7 Kết nối tri thức với cuộc sống hay, chi tiết khác: