X

Vở thực hành Toán 8

Cho tam giác ABC cân tại A Trên cạnh AB lấy điểm M, trên cạnh AC


Giải vở thực hành Toán 8 Luyện tập chung trang 49, 50, 51 - Kết nối tri thức

Bài 5 trang 51 vở thực hành Toán 8 Tập 1: Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho AM = AN.

a) Tính số đo góc AMN theo góc A.

b) Tứ giác BMNC là hình gì? Vì sao?

c) Cho BM = MN = NC, chứng minh BN là phân giác của góc ABC, CM là phân giác của góc ACB.

Lời giải:

Cho tam giác ABC cân tại A Trên cạnh AB lấy điểm M, trên cạnh AC

(H.3.18). a) Ta có AM = AN (giả thiết) nên ∆AMN cân tại A

M^1=N^1=180°A^2.

b) Vì ∆ABC cân tại A nên B^=C^=180°A^2.

Suy ra M^1=B^ MN // BC (do có cặp góc đồng vị bằng nhau), từ đó tứ giác BMNC là hình thang.

Mặt khác B^=C^ nên BMNC là hình thang cân.

c) Ta có BM = MN ∆BMN cân tại M B^1=N^2.

Do MN // BC nên B^2=N^2 (hai góc so le trong). Từ đó suy ra B^1=B^2, tức BN là tia phân giác của góc ABC.

Tương tự ta chứng minh được CM là tia phân giác của góc ACB.

Lời giải vở thực hành Toán 8 Luyện tập chung trang 49, 50, 51 hay khác:

Xem thêm các bài giải vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác: