Gọi T là tổng, H là hiệu của hai đa thức 3x^2y – 2xy^2 + xy và –2x^2y + 3xy^2 + 1
Giải vở thực hành Toán 8 Bài tập cuối chương 1 - Kết nối tri thức
Câu 2 trang 23 vở thực hành Toán 8 Tập 1: Gọi T là tổng, H là hiệu của hai đa thức 3x2y – 2xy2 + xy và –2x2y + 3xy2 + 1. Khi đó:
A. T = x2y – xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
B. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
C. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 – xy – 1.
D. T = x2y + xy2 + xy – 1 và H = 5x2y + 5xy2 + xy – 1.
Lời giải:
Đáp án đúng là: B
Ta có:
• T = (3x2y – 2xy2 + xy) + (–2x2y + 3xy2 + 1)
= 3x2y – 2xy2 + xy – 2x2y + 3xy2 + 1
= (3x2y – 2x2y) + (3xy2 – 2xy2) + xy + 1
= x2y + xy2 + xy + 1.
• H = (3x2y – 2xy2 + xy) – (–2x2y + 3xy2 + 1)
= 3x2y – 2xy2 + xy + 2x2y – 3xy2 – 1
= (3x2y + 2x2y) – (3xy2 + 2xy2) + xy – 1
= 5x2y – 5xy2 + xy – 1.
Lời giải vở thực hành Toán 8 Bài tập cuối chương 1 hay khác:
Câu 1 trang 23 vở thực hành Toán 8 Tập 1: Đơn thức −23x2yz3 có: A. hệ số −2, bậc 8 ...
Câu 3 trang 23 vở thực hành Toán 8 Tập 1: Tích của hai đơn thức 6x2yz và −2y2z2 là đơn thức ...