15 Bài tập Xác suất của biến cố Trắc nghiệm Toán 10 (có đáp án) - Chân trời sáng tạo
Haylamdo biên soạn và sưu tầm với 15 bài tập trắc nghiệm Xác suất của biến cố Toán lớp 10 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Chân trời sáng tạo sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.
15 Bài tập Xác suất của biến cố Trắc nghiệm Toán 10 (có đáp án) - Chân trời sáng tạo
Câu 1. Xác suất của biến cố A kí hiệu là P(A). Biến cố là biến cố đối của A, có xác suất là
Chọn phát biểu sai trong các phát biểu sau:
A. Với mọi biến cố A, 0 ≤ P(A) ≤ 1;
B. P(Ω) = 1, P(∅) = 0;
C. Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1;
D.
Câu 2. Chọn khẳng định đúng trong các khẳng định sau:
A. ;
B. P() + P(A) = 1;
C. Với mọi biến cố A, 0 ≤ P(A) ≤ 1;
D. Cả 3 phương án trên đều đúng.
Câu 3. Gieo một con xúc xắc. Xác suất để mặt chấm chẵn xuất hiện là?
A. 0,2;
B. 0,3;
C. 0,4;
D. 0,5.
Câu 4. Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:
A. P(A) = ;
B. P(A) = ;
C. P(A) = ;
D. P(A) = .
Câu 5. Tung một đồng xu cân đối và đồng chất 3 lần liên tiếp. Xác suất của biến cố A: “Trong 3 lần tung có ít nhất 1 lần xuất hiện mặt sấp” là:
A. P(A) = ;
B. P(A) = ;
C. P(A) = ;
D. P(A) = .
Câu 6. Trong hộp có 6 quả cầu đỏ và 4 quả cầu xanh, lấy ngẫu nhiên đồng thời 4 quả cầu. Xác suất để 4 quả cầu lấy ra cùng màu là:
A. P =
B. P =
C. P =
D. P = .
Câu 7. Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:
A. ;
B. ;
C. 1;
D. .
Câu 8. Trong một chiếc hộp có 20 viên bi, trong đó có 8 viên bi màu đỏ, 7 viên bi màu xanh và 5 viên bi màu vàng. Lấy ngẫu nhiên ra 3 viên bi. Xác suất để 3 viên bi lấy ra đều màu đỏ là:
A. ;
B. ;
C. ;
D. .
Câu 9. Chọn ngẫu nhiên 5 sản phẩm trong 10 sản phẩm. Biết rằng trong 10 sản phẩm đó có 2 phế phẩm. Xác suất để trong 5 sản phẩm được chọn có ít nhất 1 phế phẩm là:
A. ;
B. ;
C. ;
D. .
Câu 10. Lớp 11B có 20 học sinh gồm 12 nữ và 8 nam. Cần chọn ra 2 học sinh của lớp đi lao động. Xác suất để chọn được 2 học sinh trong đó có cả nam và nữ là:
A. ;
B. ;
C. ;
D. .
Câu 11. Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt là:
A. ;
B. ;
C. ;
D. .
Câu 12. Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng , hỏi tổ có bao nhiêu học sinh nữ?
A. 6;
B. 5;
C. 3;
D. 4.
Câu 13. Một hộp đựng 9 viên bi có kích thước và khối lượng như nhau, trong đó có 4 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên từ hộp 3 viên bi. Xác suất để 3 viên bi lấy ra có ít nhất 2 viên bi màu xanh là:
A.
B.
C.
D.
Câu 14. Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:
A. ;
B. ;
C. ;
D. .
Câu 15. Một dãy phố có 5 cửa hàng bán quần áo. Có 5 người khách đến mua quần áo, mỗi người khách vào ngẫu nhiên một trong năm cửa hàng đó. Xác suất để có một cửa hàng có 3 người khách là:
A.
B.
C.
D.
Câu 1:
Xác suất của biến cố A kí hiệu là P(A). Biến cố là biến cố đối của A, có xác suất là
Chọn phát biểu sai trong các phát biểu sau:
A. Với mọi biến cố A, 0 ≤ P(A) ≤ 1;
B. P() = 1, P(∅) = 0;
C. Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1;
D.
Câu 2:
Chọn khẳng định đúng trong các khẳng định sau:
A. ;
B. P + P(A) = 1;
C. Với mọi biến cố A, 0 ≤ P(A) ≤ 1;
D. Cả 3 phương án trên đều đúng.
Câu 3:
Gieo một con xúc xắc. Xác suất để mặt chấm chẵn xuất hiện là?
A. 0,2;
B. 0,3;
C. 0,4;
D. 0,5.
Câu 4:
Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:
A. P(A) = 13/28
B. P(A) = 5/8
C. P(A) = 23/28
D. P(A) = 3/28
Câu 5:
Tung một đồng xu cân đối và đồng chất 3 lần liên tiếp. Xác suất của biến cố A: “Trong 3 lần tung có ít nhất 1 lần xuất hiện mặt sấp” là:
A. P(A) =7/8
B. P(A) =1/2
C. P(A) =3/8
D. P(A) =1/8
Câu 6:
Trong hộp có 6 quả cầu đỏ và 4 quả cầu xanh, lấy ngẫu nhiên đồng thời 4 quả cầu. Xác suất để 4 quả cầu lấy ra cùng màu là:
A. P = 8/105
B. P = 18/105
C. P = 24/105
D. P = 4/53
Câu 7:
Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:
A. 45/182
B. 12/34
C. 1;
D. 56/182
Câu 8:
A. 45/128
B. 14/285
C. 28/145
D. 15/248
Câu 9:
Chọn ngẫu nhiên 5 sản phẩm trong 10 sản phẩm. Biết rằng trong 10 sản phẩm đó có 2 phế phẩm. Xác suất để trong 5 sản phẩm được chọn có ít nhất 1 phế phẩm là:
A. 7/9
B. 2/3
C. 3/4
D. 1/2
Câu 10:
Lớp 11B có 20 học sinh gồm 12 nữ và 8 nam. Cần chọn ra 2 học sinh của lớp đi lao động. Xác suất để chọn được 2 học sinh trong đó có cả nam và nữ là:
A. 14/95
B. 48/95
C. 33/95
D. 47/95
Câu 11:
Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt là:
A. 3/5
B. 5/6
C. 1/3
D. 2/3
Câu 12:
Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng 5/18, hỏi tổ có bao nhiêu học sinh nữ?
A. 6;
B. 5;
C. 3;
D. 4.
Câu 13:
Một hộp đựng 9 viên bi có kích thước và khối lượng như nhau, trong đó có 4 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên từ hộp 3 viên bi. Xác suất để 3 viên bi lấy ra có ít nhất 2 viên bi màu xanh là:
A. 5/42
B. 10/21
C. 5/14
D. 25/42
Câu 14:
Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:
A. 653/660
B. 7/660
C. 41/55
D. 14/55
Câu 15:
Một dãy phố có 5 cửa hàng bán quần áo. Có 5 người khách đến mua quần áo, mỗi người khách vào ngẫu nhiên một trong năm cửa hàng đó. Xác suất để có một cửa hàng có 3 người khách là:
A. 3/125
B. 181/625
C. 24/125
D. 32/125
Câu 1:
Xác suất của biến cố H được xác định bởi công thức:
A. P(H) = n(H);
B.
C. P(H) = n(H).n(Ω);
Câu 2:
Cho biến cố A có không gian mẫu là Ω và là biến cố đối của biến cố A. Khẳng định nào sau đây sai?
A. P(A) ≥ 0, với mọi biến cố A;
B. P(∅) = 0;
C. P(Ω) > 1;
Câu 3:
Phát biểu nào sau đây đúng?
A. Biến cố có khả năng xảy ra cao hơn sẽ có xác suất nhỏ hơn biến cố có khả năng xảy ra thấp hơn;
B. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng gần 0;
C. Biến cố có khả năng xảy ra càng thấp thì xác suất của nó càng gần 1;
Câu 4:
Một hộp gồm có 4 bi xanh và 5 bi đỏ. Lấy ngẫu nhiên hai viên bi trong hộp. Biến cố đối của biến cố D: “Hai viên bi cùng màu” là:
A. : “Hai viên bi khác màu”;
B. : “Hai viên bi có màu đỏ”;
C. : “Hai viên bi có màu xanh”;
Câu 5:
Một học sinh chọn đúng một câu trả lời trắc nghiệm với xác suất là . Khi đó xác suất học sinh chọn sai câu trả lời trắc nghiệm đó là:
A.
B.
C.
D.
Câu 6:
Hai xạ thủ bắn vào một tấm bia, xác suất bắn trúng bia của xạ thủ 1 và 2 lần lượt là 0,8 và 0,7. Xạ thủ nào có khả năng bắn trúng thấp hơn?
A. Xạ thủ 1;
B. Xạ thủ 2;
C. Cả hai xạ thủ đều có khả năng bắn trúng như nhau;
Câu 7:
Cho phép thử có không gian mẫu là Ω = {1; 2; 3; 4; 5; 6}. Các cặp biến cố không đối nhau là:
A. A = {1} và B = {2; 3; 4; 5; 6};
B. C = {1; 4; 5} và D = {2; 3; 6};
C. E = {1; 4; 6} và F = {2; 3};
Câu 1:
Một hội nghị có 15 nam và 6 nữ. Chọn ngẫu nhiên 3 người vào ban tổ chức. Xác suất để 3 người được chọn là nam là:
A.
B.
C.
D.
Câu 2:
Gieo đồng thời hai xúc xắc 6 mặt cân đối và đồng chất. Xác suất để hiệu số chấm các mặt xuất hiện của hai xúc xắc bằng 2 là:
A.
B.
C.
D. 1
Câu 3:
Chọn ngẫu nhiên một số tự nhiên có 4 chữ số khác nhau. Gọi A là biến cố “Số tự nhiên được chọn gồm 4 số 3; 4; 5; 6”. Xác suất của biến cố A là:
A.
B.
C.
D.
Câu 4:
Một hộp đựng 1 viên bi màu xanh, 1 viên bi màu đỏ và 1 viên bi màu trắng. Lấy ngẫu nhiên một viên bi và xem màu của viên bi đó rồi đặt lại vào hộp, thử nghiệm 3 lần liên tiếp. Xác suất để có ít nhất 2 lần lấy viên bi cùng màu là:
A.
B.
C.
D.
Câu 5:
Xét các số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1; 3; 5; 7; 9. Xác suất để tìm được một số không có dạng là:
A.
B.
C.
D.
Câu 6:
Một lớp có 30 học sinh, trong đó có 8 học sinh giỏi, 15 học sinh khá và 7 học sinh trung bình. Chọn ngẫu nhiên 3 học sinh đi dự đại hội. Xác suất để trong 3 học sinh được chọn không có học sinh trung bình là:
A.
B.
C.
D.
Câu 7:
Một lớp học có 20 học sinh nam và 15 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh lên bảng giải bài tập. Xác suất để 4 học sinh được chọn có cả nam và nữ là:
A.
B.
C.
D.
Câu 8:
Một tổ có 9 học sinh, trong đó có 5 học sinh nam và 4 học sinh nữ được xếp thành hàng dọc. Xác suất sao cho 5 học sinh nam đứng kề nhau là:
A.
B.
C.
D.
Câu 1:
Có ba chiếc hộp. Mỗi hộp chứa 5 tấm thẻ được đánh số từ 1 đến 5. Lấy ngẫu nhiên từ mỗi hộp một thẻ rồi cộng các số trên 3 tấm thẻ vừa rút ra lại với nhau. Xác suất để kết quả thu được là số chẵn là:
A.
B.
C.
D.
Câu 2:
Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có ai là:
A.
B.
C.
D.
Câu 3:
Đề cương ôn tập cuối năm môn Toán lớp 10 có 30 câu hỏi. Đề thi thử cuối năm gồm 3 câu hỏi trong số 30 câu hỏi trong đề cương. Một học sinh chỉ ôn 20 câu trong đề cương. Giả sử các câu hỏi trong đề cương đều có khả năng được chọn làm câu hỏi trong đề thi cuối năm như nhau. Khi đó xác suất để có ít nhất 2 câu hỏi của đề thi cuối năm nằm trong số 20 câu hỏi mà học sinh nói trên đã ôn là:
A.
B.
C.
D.
Câu 4:
Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt là:
A.
B.
C.
D.
Câu 5:
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có tọa độ các đỉnh A(–2; 0), B(–2; 2), C(4; 2), D(4; 0). Chọn ngẫu nhiên một điểm có tọa độ (x; y) (với x, y là các số nguyên) nằm trong hình chữ nhật ABCD, kể cả các điểm nằm trên cạnh. Gọi A là biến cố “x, y đều chia hết cho 2”. Xác suất của biến cố A là:
A.
B.
C. 1
D.