Bài 1.15 trang 23 Chuyên đề Toán 10


Giải Chuyên đề Toán 10 Bài tập cuối chuyên đề 1

Haylamdo biên soạn và sưu tầm lời giải Bài 1.15 trang 23 Chuyên đề Toán 10 trong Bài tập cuối chuyên đề 1. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.

Bài 1.15 trang 23 Chuyên đề Toán 10: Giải các hệ phương trình sau:

a) x+y+z=6x+2y+3z=143x2yz=4;

b) 2x2y+z=63x+2y+5z=77x+3y6z=1;

c) 2x+y6z=13x+2y5z=57x+4y17z=7;

d) 5x+2y7z=62x+3y+2z=79x+8y3z=1.

Lời giải:

a) x+y+z=6x+2y+3z=143x2yz=4x+y+z=6y2z=85y+4z=22

x+y+z=6y2z=86z=18x+y+z=6y2.3=8z=3

x+2+3=6y=2z=3x=1y=2z=3.

Vậy hệ phương trình đã cho có nghiệm là (x; y; z) = (1; 2; 3).

b) 2x2y+z=63x+2y+5z=77x+3y6z=12x2y+z=610y7z=47x+3y6z=1

2x2y+z=610y7z=420y+19z=402x2y+z=68y7z=433z=32

2x2y+z=68y7.3233=4z=32332x2178165+3233=6y=178165z=3233

x=7955y=178165z=3233.

Vậy hệ phương trình đã cho có nghiệm là (x; y; z) = 7955;178165;3233.

c) 2x+y6z=13x+2y5z=57x+4y17z=72x+y6z=1y8z=77x+4y17z=7

2x+y6z=1y8z=7y8z=72x+y6z=1y8z=7.

Rút y theo z từ phương trình thứ hai ta được y = 7 – 8z. Rút x theo y và z từ phương trình thứ nhất ta được x = 1y+6z2=178z+6z2=7z3. Vậy hệ đã cho có vô số nghiệm và tập nghiệm của hệ là S = {(7z – 3; 7 – 8z; z) | z ∈ }.

d) 5x+2y7z=62x+3y+2z=79x+8y3z=15x+2y7z=611y24z=2322y48z=49

5x+2y7z=622y48z=4622y48z=49.

Từ hai phương trình cuối, suy ra –46 = 49, điều này vô lí.

Vậy hệ ban đầu vô nghiệm.

Xem thêm lời giải bài tập Chuyên đề Toán 10 Kết nối tri thức hay, chi tiết khác: