Bài 4 trang 13 Chuyên đề Toán 10
Giải Chuyên đề Toán 10 Bài 1: Hệ phương trình bậc nhất ba ẩn
Haylamdo biên soạn và sưu tầm lời giải Bài 4 trang 13 Chuyên đề Toán 10 trong Bài 1: Hệ phương trình bậc nhất ba ẩn. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.
Bài 4 trang 13 Chuyên đề Toán 10: Tìm phương trình của parabol (P): y = ax2 + bx + c (a ≠ 0), biết:
a) Parabol (P) có trục đối xứng x = 1 và đi qua hai điểm A(1; –4), B(2; –3);
b) Parabol (P) có đỉnh I và đi qua điểm M(–1; 3).
Lời giải:
a) Theo đề bài ta có:
– (P) có trục đối xứng x = 1, suy ra = 1, suy ra 2a + b = 0 (1).
– (P) đi qua điểm A(1; –4), suy ra –4 = a . 12 + b . 1 + c hay a + b + c = –4 (2).
– (P) đi qua điểm B(2; –3), suy ra –3 = a . 22 + b . 2 + c hay 4a + 2b + c = –3 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được a = 1, b = –2, c = –3.
Vậy phương trình của (P) là y = x2 – 2x – 3.
b) Theo đề bài ta có:
– (P) có có đỉnh I (), suy ra = hay a + b = 0 (1)
và hay a + 2b + 4c = 3 (2).
– (P) đi qua điểm M(–1; 3), suy ra 3 = a . (–1)2 + b . (–1) + c hay a – b + c = 3 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được a = 1, b = –1, c = 1.
Vậy phương trình của (P) là y = x2 – x + 1.