Giải và biện luận các phương trình sau theo tham số m. 2m(x - 2) + 4 = (3 - m^2)x
Ôn tập chương 3
Bài 3.41 trang 76 Sách bài tập Đại số 10: Giải và biện luận các phương trình sau theo tham số m
Lời giải:
a) Phương trình đã cho tương đương với phương trình
(m - 1)(m + 3)x = 4(m - 1)
Với m ≠ 1 và m ≠ -3 phương trình có nghiệm
Với m = 1 mọi số thực x đều là nghiệm của phương trình;
Với m = -3 phương trình vô nghiệm.
b) Điều kiện của phương trình là m ≠ 1/2. Khi đó ta có
Nếu m ≠ -1/5 thì phương trình có nghiệm
Giá trị này là nghiệm của phương trình đã cho khi
Nếu m = -1/5 phương trình cuối vô nghiệm.
Kết luận.
Với m = -1/5 hoặc m = -3 phương trình đã cho vô nghiệm.
Với m ≠ -1/5 và m ≠ -3 nghiệm của phương trình đã cho là
c) Điều kiện của phương trình là x ≠ -3. Khi đó ta có
Với m = -1/4 phương trình (1) trở thành
3x + 3 = 0 ⇔ x = -1
Với m ≠ -1/4 phương trình (1) là một phương trình bậc hai có
Δ' = (2m - 1)2 ≥ 0
Lúc đó phương trình (1) có hai nghiệm
Kết luận
Với m = 0 hoặc m = -1/4 phương trình đã cho có một nghiệm x = -1.
Với m ≠ 0 và m ≠ -1/4 phương trình đã cho có hai nghiệm
x = -1 và
d) Điều kiện của phương trình là x ≠ 2. Khi đó ta có
Với m = 1 phương trình (2) có dạng
-2x + 2 = 0 ⇔ x = 1
Với m ≠ 1 thì phương trình (2) là một phương trình bậc hai có :
Δ = (m - 3)2 ≥ 0
Lúc đó phương trình (2) có hai nghiệm
Kết luận :
Với m = 1 và m = 2 phương trình đã cho có một nghiệm là x = 1.
Với m ≠ 1 và m ≠ 2 phương trình đã cho có hai nghiệm
x = 1 và