Tính diện tích của hình phẳng giới hạn bởi các đường sau y = |x2 – 1| và y = 5 + |x|
Ôn tập cuối năm
Bài 19 trang 219 Sách bài tập Giải tích 12: Tính diện tích của hình phẳng giới hạn bởi các đường sau:
a) y = |x2 – 1| và y = 5 + |x|
b) 2y = x2 + x – 6 và 2y = -x2 + 3x + 6
c) ,x=1 và tiếp tuyến với đường tại điểm (2; 3/2)
Lời giải:
a) Hai hàm số y = |x2 – 1| và y = 5 + |x| đều là hàm số chẵn. Miền cần tính diện tích được thể hiện ở Hình 8. Do tính đối xứng qua trục tung, ta có:
b) Miền cần tính diện tích được thể hiện bởi Hình 9 (học sinh tự làm)
Như vậy, với mọi x ∈ (-2;3) đồ thị của hàm số
nằm phía trên đồ thị của hàm số
Vậy ta có:
c) Miền cần tính diện tích được thể hiện trên Hình 10:
(vì tiếp tuyến với đồ thị của
tại điểm (2;3/2) có phương trình là