X

Giải sách bài tập Toán 12

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: f(x) = √(25−x^2) trên đoạn [-4; 4]


Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Giải bài 34 trang 21 SBT Giải tích 12 Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số giúp học sinh biết cách làm bài tập trong SBT Toán 12.

Bài 1.34 trang 21 Sách bài tập Giải tích 12: Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:

a) f(x) = √(25−x2) trên đoạn [-4; 4]

b) f(x) = |x2 – 3x + 2| trên đoạn [-10; 10]

c) f(x) = 1/sinx trên đoạn [π/3; 5π/6]

d) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

Lời giải:

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = |x2 − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x2 – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và fCT = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

Xem thêm Các bài giải sách bài tập 12 khác: