Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 - 2x + 4y + 2z - 19 = 0
Đề toán tổng hợp ôn tập cuối năm
Bài 8 trang 169 Sách bài tập Hình học 12: Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 - 2x + 4y + 2z - 19 = 0
và mặt phẳng (P): x - 2y + 2z - 12 = 0
a) Chứng minh rằng (P) cắt (S) theo một đường tròn.
b) Tìm tọa độ tâm và bán kính của đường tròn đó.
Lời giải:
a) Mặt cầu (S) tâm I(1; -2; -1) bán kính R = 5
d(I,(P)) = 3 < R
Do đó (P) cắt (S) theo một đường tròn, gọi đường tròn đó là (C).
b) Gọi d là đường thẳng qua I và vuông góc với (P). Phương trình của d là
Tâm của (C) là điểm H = d ∩ (P). Để tìm H ta thay phương trình của d vào phương trình của (P).
Ta có: 1 + t - 2(-2 - 2t) + 2(-1 + 2t) - 12 = 0
Suy ra t = 1, do đó H = (2; -4; 1).
Bán kính của (C) bằng