Bài 49, 50 trang 96 SBT Toán 8 tập 2
Bài 49, 50 trang 96 SBT Toán 8 tập 2
Bài 49 trang 96 sách bài tập Toán 8 Tập 2: Đường cao của một tam giác vuông xuất phát từ đỉnh góc vuông chia cạnh huyền thành hai đoạn thẳng có dộ dài là 9cm và 16cm; Tính độ dài các cạnh của tam giác vuông.
Lời giải:
Xét hai tam giác vuông DAC và DBA ,ta có:
∠(ADC) = ∠(BDA) = 90o
∠C = ∠(DAB) (hai góc cùng phụ ∠B )
Suy ra: ΔDAC đồng dạng ΔDBA (g.g)
Suy ra:
⇒ DA2 =DB.DC
hay DA = √(DB.DC) = √(9.16) = 12 (cm)
Áp dụng định lí Pi-ta-go vào tam giác vuông ABD, ta có:
AB2 = DA2 + DB2 = 92 + 122 = 225 => AB =15 (cm)
Áp dụng định lí Pi-ta-go vào tam giác vuông ACD,ta có:
AC2 = DA2 + DC2 = 122 +162 = 400 ⇒ AC = 20cm
Vậy BC = BD + DC = 9 + 16 = 25(cm)
Bài 50 trang 96 sách bài tập Toán 8 Tập 2: Tam giác vuông ABC (A = 90o) có đường cao AH và trung tuyến AM. Tính diện tích tam giác AMH,biết rằng BH = 4cm, CH = 9cm
Lời giải:
Xét hai tam giác vuông HBA,HAC có:
∠(BHA) = ∠(AHC) = 90o
∠B = ∠(HAC) (hai góc cùng phụ ∠C )
⇒ ΔHBA đồng dạng ΔHAC (g.g)
Suy ra:
⇒ HA2 = HB.HC = 4.9 = 36(cm)
Suy ra: AH = 6(cm)
Lại có: BM = 1/2 BC = 1/2 .(9+4) = 1/2 .13 = 6.5cm
Mà HM = BM – BH = 6,5 – 4 = 2,5cm
Vậy SAHM = 1/2 AH.HN = 1/2 .6.2,5 = 7,5cm2