X

Giải sách bài tập Toán 9

Bài 16, 17, 18, 19 trang 52 SBT Toán 9 Tập 2


Bài 16, 17, 18, 19 trang 52 SBT Toán 9 Tập 2

Bài 16 trang 52 Sách bài tập Toán 9 Tập 2: Giải các phương trình:

a. 5x2 – 20 = 0     b. -3x2 + 15 = 0

c. 1,2x2 – 0,192 = 0     d. 1172,5x2 + 42,18 = 0

Lời giải:

a.Ta có: 5x2 – 20 = 0 ⇔ 5x2= 20 ⇔ x2 = 4 ⇔ x = ±2

Vậy phương trình có hai nghiệm x1 = 2, x2 = -2

b.Ta có: -3x2 + 15 = 0 ⇔ -3x2 = -15 ⇔ x2 = 5 ⇔ x = ±√5

Vậy phương trình có hai nghiệm x1 = √5 , x2 = -√5

c.Ta có: 1,2x2 – 0,192 = 0 ⇔ 1,2x2 = 0,192 ⇔ x2 = 0,16 ⇔ x = ±0,4

Vậy phương trình có hai nghiệm x1= 0,4, x2 = -0,4

d.Ta có: x2 ≥ 0 ⇒ 1172,5x2 ≥ 0 ⇒ 1172,5x2 + 42,18 > 0

Vậy không có giá trị nào của x thỏa mãn phương trình nên phương trình vô nghiệm.

Bài 17 trang 52 Sách bài tập Toán 9 Tập 2: Giải các phương trình :

a. (x – 3)2 = 4    b. (1/2 - x)2– 3 = 0

c. (2x - 2 )2 – 8 = 0     d. (2,1x – 1,2)2– 0,25 = 0

Lời giải:

a.Ta có : (x – 3)2 = 4 ⇔ (x – 3)2 – 22 = 0

⇔ [(x – 3) + 2][(x – 3) – 2] = 0 ⇔ (x – 1)(x – 5) = 0

⇔ x – 1 = 0 hoặc x – 5 = 0 ⇔ x = 1 hoặc x = 5

Vậy phương trình có hai nghiệm x1 = 1, x2 = 5

b.Ta có: (1/2 - x)2 – 3 = 0 ⇔ (1/2 - x)2 – (√3 )2 = 0

⇔ [(1/2 - x) + √3 ][(1/2 - x) - √3 ] = 0

⇔ (1/2 + √3 – x)( 1/2 - √3 – x) = 0

⇔ 1/2 + √3 – x = 0 hoặc 1/2 - √3 – x = 0

⇔ x = 1/2 + √3 hoặc x = 1/2 - √3

Vậy phương trình có hai nghiệm x1 = 1/2 + √3 , x2 = 1/2 - √3

c.Ta có: (2x - √2 )2 – 8 = 0 ⇔ (2x - √2 )2 – (2√2 )2 = 0

⇔ [(2x - √2 ) + 2√2 ][(2x - √2 ) - 2√2 ] = 0

⇔ (2x - √2 + 2√2 )(2x - √2 - 2√2 ) = 0

⇔ (2x + √2 )(2x - 3√2 ) = 0

⇔ 2x + √2 = 0 hoặc 2x - 3√2 = 0

⇔ x = -√2/2 hoặc x = 3√2/2

Vậy phương trình có hai nghiệm x1 = -√2/2 hoặc x2 = 3√2/2

d.Ta có: (2,1x – 1,2)2 – 0,25 = 0 ⇔ (2,1x – 1,2)2 – (0,5)2 = 0

⇔ [(2,1x – 1,2) + 0,5][(2,1x – 1,2) – 0,5] = 0

⇔ (2,1x – 1,2 + 0,5)(2,1x -1,2 – 0,5) = 0

⇔ (2,1x – 0,7)(2,1x – 1,7) = 0

⇔ 2,1x – 0,7 = 0 hoặc 2,1x – 1,7 = 0

⇔ x = (0,7)/(2,1) hoặc x = (1,7)/(2,1) ⇔ x = 1/3 hoặc x = 17/21

Vậy phương trình có hai nghiệm x1 = 1/3 hoặc x2 = 17/21

Bài 18 trang 52 Sách bài tập Toán 9 Tập 2: Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số.

a. x2 – 6x + 5 = 0    b. x2 – 3x – 7 = 0

c. 3x2 – 12x + 1 = 0     d. 3x2 – 6x + 5 = 0

Lời giải:

a. Ta có : x2 – 6x + 5 = 0 ⇔ x2 – 2.3x + 5 + 4 = 4

⇔ x2 – 2.3x + 9 = 4 ⇔ (x – 3)2 = 22

⇔ x – 3 = ±2 ⇔ x – 3 = 2 hoặc x – 3 = -2

⇔ x = 1 hoặc x = 5

Vậy phương trình có hai nghiệm x1 = 1, x2 = 5

Bài 16, 17, 18, 19 trang 52 SBT Toán 9 Tập 2 | Giải sách bài tập Toán lớp 9 Bài 16, 17, 18, 19 trang 52 SBT Toán 9 Tập 2 | Giải sách bài tập Toán lớp 9

d.Ta có : 3x2 – 6x + 5 = 0 ⇔ x2- 2x + 5/3 = 0

⇔ x2 – 2x + 5/3 + 1 = 1 ⇔ x2 – 2x + 1 = 1 - 5/3

⇔ (x – 1)2 = -2/3

Ta thấy (x – 1)2 ≥ 0 và -2/3 < 0

Vậy phương trình vô nghiệm.

Bài 19 trang 52 Sách bài tập Toán 9 Tập 2: Nhận thấy rằng phương trình tích (x + 2)(x – 3) = 0, hay phương trình bậc hai x2 – x – 6 = 0, có hai nghiệm là x1 = -2, x2 = 3. Tương tự, hãy lập những phương trình bậc hai mà nghiệm mỗi phương trình là một trong những cặp số sau :

a. x1 = 2, x2 = 5     b. x1 = -1/2 , x2 = 3

c. x1 = 0,1, x2 = 0,2     d. x1 = 1 - √2 , x2 = 1 + √2

Lời giải:

a. Hai số 2 và 5 là nghiệm của phương trình :

(x – 2)(x – 5) = 0 ⇔ x2 – 7x + 10 = 0

b. Hai số -1/2 và 3 là nghiệm của phương trình :

(x + 1/2 )(x – 3) = 0 ⇔ 2x2 – 5x – 3 = 0

c. Hai số 0,1 và 0,2 là nghiệm của phương trình :

(x – 0,1)(x – 0,2) = 0 ⇔ x2 – 0,3x + 0,02 = 0

d. Hai số 1 - √2 và 1 + √2 là nghiệm của phương trình :

[x – (1 - √2 )][x – (1 + √2 )] = 0

⇔ x2 – (1 + √2 )x – (1 - √2 )x + (1 - √2 )(1 + √2 ) = 0

⇔ x2 – 2x – 1 = 0

Xem thêm các bài Giải sách bài tập Toán 9 khác: