Bài 3.3, 3.4 trang 53 SBT Toán 9 Tập 2
Bài 3.3, 3.4 trang 53 SBT Toán 9 Tập 2
Bài 3 trang 53 Sách bài tập Toán 9 Tập 2: Tìm b, c để phương trình x2 + bx + c = 0 có hai nghiệm là những số dưới đây:
Lời giải:
Bài 4 trang 53 Sách bài tập Toán 9 Tập 2: Tìm a, b, c để phương trình ax2 + bx + c = 0 có hai nghiệm là x1 = -2 và x2 = 3.
Có thể tìm được bao nhiêu bộ ba số a, b, c thỏa mãn yêu cầu bài toán?
Lời giải:
x = -2 là nghiệm của phương trình: ax2 + bx + c = 0, ta có:
4a - 2b + c = 0
x = 3 là nghiệm của phương trình: ax2 + bx + c = 0 ta có:
9a + 3b + c = 0
Ba số a, b, c là nghiệm của hệ phương trình:
thì phương trình ax2 + bx + c = 0 có nghiệm x1 = -2; x2 = 3
Ví dụ: a = 2, b = -2, c = -12 ta có phương trình:
⇔ 2x2 - 2x - 12 = 0
⇔ x2- x - 6 = 0
⇔ (x + 2)(x - 3) = 0
Có nghiệm: x1 = - 2;x2 = 3
Có vô số bộ ba a, b, c thỏa mãn yêu cầu bài toán.