X

Giải sách bài tập Toán 9

Bài 60, 61, 62, 63 trang 166 SBT Toán 9 Tập 1


Bài 60, 61, 62, 63 trang 166 SBT Toán 9 Tập 1

Bài 60 trang 166 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC, đường tròn (K) bàng tiếp trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC = a, AC = b, AB = c. Chứng minh rằng:

Bài 60, 61, 62, 63 trang 166 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9

Lời giải:

a. Gọi D là tiếp điểm của đường tròn (K) với cạnh BC.

Theo tính chất hai tiếp tuyến cắt nhau ta có:

BE = BD; CD = CF

AE = AB + BE

AF = AC + CF

Suy ra: AE + AF = AB + BE + AC + CF

= AB + AC + (BD + DC)

= AB + AC + BC = c + b + a

Mà: AE = AF (tính chất hai tiếp tuyến cắt nhau)

Bài 60, 61, 62, 63 trang 166 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9

Bài 61 trang 166 Sách bài tập Toán 9 Tập 1: Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D.

a. Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB

b. Tìm vị trí của điểm M để hình thang ABDC có chu vi nhỏ nhất

c. Tìm vị trí của C, D để hình thang ABCD có chu vi bằng 14cm, biết AB = 4cm

Lời giải:

Bài 60, 61, 62, 63 trang 166 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9

a. Theo tính chất tiếp tuyến, ta có:

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Suy ra tứ giác ABDC là hình thang

Gọi I là trung điểm của CD

Khi đó OI là đường trung bình của hình thang ABDC

Suy ra: OI // AC ⇒ OI ⊥ AB

Bài 60, 61, 62, 63 trang 166 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9

Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)

Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.

Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.

b. Theo tính chất hai tiếp tuyến cắt nhau ta có:

CA = CM

DB = DM

Suy ra: AC + BD = CM + DM = CD

Chu vi hình thang ABDC bằng: AB + BD + DC + CA = AB + 2CD

Vì đường kính AB của (O) không thay đổi nên chu vi hình thang nhỏ nhất khi CD nhỏ nhất

Ta có: CD ≥ AB nên CD nhỏ nhât khi và chỉ khi CD = AB

Khi đó CD // AB ⇔ OM ⊥ AB

Vậy khi M là giao điểm của đường thẳng vuông góc với AB tại O với nửa đường tròn (O) thì hình thang ABDC có chu vi nhỏ nhất.

c. Chu vi hình thang ABDC bằng: AB + 2CD (chứng minh trên)

Suy ra: 14 = 4 + 2.CD ⇒ CD = 5 (cm)

Hay CM + DM = 5 ⇒ DM = 5 – CM (1)

Tam giác COD vuông tại O có OM ⊥ CD

Theo hệ thức lượng trong tam giác vuông, ta có:

OM2 = CM.DM ⇔ 22 = CM.DM ⇔ 4 = CM.DM (2)

Thay (1) vào (2) ta có: CM.(5 – CM) = 4

⇔ 5CM – CM2 – 4 = 0 ⇔ 4CM – CM2 + CM – 4 = 0

⇔ CM(4 – CM) + (CM – 4) = 0 ⇔ CM(4 – CM) – (4 – CM) = 0

⇔ (CM – 1)(4 – CM) = 0 ⇔ CM – 1 = 0 hoặc 4 – CM = 0

⇔ CM = 1 hoặc CM = 4

Vì CM = CA (chứng minh trên) nên AC = 1 (cm) hoặc AC = 4 (cm)

Vậy điểm C cách điểm A 1cm hoặc 4cm thì hình thang ABDC có chu vi bằng 14.

Bài 62 trang 166 Sách bài tập Toán 9 Tập 1: Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Qua một điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ ba cắt Ax, By theo thứ tự ở C và D. Gọi N là giao điểm của AD và BC, H là giao điểm của MN và AB. Chứng minh rằng:

a. MN ⊥ AB     b. MN = NH

Lời giải:

Bài 60, 61, 62, 63 trang 166 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Trong tam giác BND, ta có AC // BD

Suy ra: ND/NA = BD/AC (hệ quả định lí Ta-lét) (1)

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = CM và BD = DM (2)

Từ (1) và (2) suy ra: ND/NA = MD/MC

Trong tam giác ACD, ta có: ND/NA = MD/MC

Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)

Mà: AC ⊥ AB (vì Ax ⊥ AB)

Suy ra: MN ⊥ AB

b. Trong tam giác ACD, ta có: MN // AC

Suy ra: MN/AC = DN/DA (hệ quả định lí Ta-lét) (3)

Trong tam giác ABC, ta có: MH // AC (vì M, N, H thẳng hàng)

Suy ra: HN/AC = BN/BC (hệ quả định lí Ta-lét) (4)

Trong tam giác BDN, ta có: AC // BD

Suy ra: ND/NA = BN/NC (hệ quả định lí Ta-lét)

⇒ ND/(DN + NA) = BN/(BN + NC) ⇔ ND/DA = BN/BC (5)

Từ (3), (4) và (5) suy ra: MN/AC = HN/AC ⇒ MN = HN

Bài 63 trang 166 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC vuông tại A. Đường tròn nội tiếp tam giác ABC tiếp xúc với BC tại D. Chứng minh rằng SABC = BD.DC

Lời giải:

Bài 60, 61, 62, 63 trang 166 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9

Gọi E và F lần lượt là tiếp điểm của đường tròn với AD và AC

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AE = AF

BE = BD

CD = CF

BD = BC + CD

BE = AB – AE

Suy ra: BD + BE = AB + BC – (AE + CD)

= AB + BC – (AE + CE)

= AB + BC – AC

Suy ra: BD = (AB + BC - AC)/2

Lại có: CD = BC – BD

CF = AC = AF

Suy ra: CD + CF = BC + AC – (BD + AF)

= BC + AC – (BE + AE)

= BC + AC – BA

Bài 60, 61, 62, 63 trang 166 SBT Toán 9 Tập 1 | Giải sách bài tập Toán lớp 9

Vậy SABC = BD.DC.

Xem thêm các bài Giải sách bài tập Toán 9 khác: