X

Giải bài tập Toán 12

Chứng minh các bất đẳng thức sau trang 10 sgk Giải tích 12


Toán lớp 12 Bài 1: Sự đồng biến, nghịch biến của hàm số

Bài 5 (trang 10 SGK Giải tích 12): Chứng minh các bất đẳng thức sau:

Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Lời giải:

a) Xét hàm số y = f(x) = tanx – x trên khoảng (0; π/2)

Ta có: y’ = Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12 > 0 với ∀ x ∈ R.

⇒ hàm số đồng biến trên khoảng (0; π/2)

⇒ f(x) > f(0) = 0 với ∀ x > 0

hay tan x – x > 0 với ∀ x ∈ (0; π/2)

⇔ tan x > x với ∀ x ∈ (0; π/2) (đpcm).

b) Xét hàm số y = g(x) = tanx - x - Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12 trên Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Theo kết quả câu a): tanx > x ∀ x ∈ Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

⇒ g'(x) > 0 ∀ x ∈ Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = g'(x) đồng biến trên Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

⇒ g(x) > g(0) = 0 với ∀ x ∈ Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Kiến thức áp dụng

+ Hàm số y = f(x) có đạo hàm trên khoảng K xác định:

Nếu f’(x) < 0 với mọi x ∈ K thì hàm số f(x) nghịch biến trên K.

Nếu f’(x) > 0 với mọi x ∈ K thì hàm số f(x) đồng biến trên K.

+ Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Xem thêm các bài giải bài tập Toán 12 hay khác: