Cho tứ diện đều ABCD cạnh a. Gọi H là hình chiếu
Toán lớp 12 Ôn tập chương 2 Hình học 12
Bài 5 (trang 50 SGK Hình học 12): Cho tứ diện đều ABCD cạnh a. Gọi H là hình chiếu vuông góc của đỉnh A xuống mặt phẳng (BCD).
a) Chứng minh H là tâm đường tròn ngoại tiếp tam giác BCD. Tính độ dài đoạn AH.
b) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác BCD và chiều cao AH.
Lời giải:
a. Từ A vẽ AH ⊥ (BCD)
Xét ba tam giác ABH, ACH và ADH có:
AB= AC = AD ( vì ABCD là tứ diện đều).
AH chung
=> ∆ ABH = ∆ ACH =∆ ADH ( ch- cgv)
Suy ra,HB = HC = HD . Do đó, H là tâm đường tròn ngoại tiếp tam giác BCD
Do tam giác BCD là tam giác đều nên H đồng thời là trọng tâm tam giác BCD
Gọi M là trung điểm CD. Ta có;
+ xét tam giác AHB vuông tại H có:
Diện tích xung quanh của hình trụ là:
Thể tích của khối trụ là;