Tập nghiệm của bất phương trình – x^2 + 3x + 18 ≥ 0 là


Tập nghiệm của bất phương trình – x^2 + 3x + 18 ≥ 0 là:

Giải sách bài tập Toán 10 Bài 4: Bất phương trình bậc hai một ẩn

Bài 29 trang 56 SBT Toán 10 Tập 1: Tập nghiệm của bất phương trình – x^2 + 3x + 18 ≥ 0 là:

A. [ – 3; 6];

B. (– 3; 6);

C. (– ∞; – 3) ∪ (6; +∞);

D. (– ∞; – 3] ∪ [6; +∞).

Lời giải:

Đáp án đúng là A

Xét f(x) = – x2 + 3x + 18 là một tam thức bậc hai có a = – 1 < 0 và ∆ = 32 – 4.(– 1).18 = 81 > 0.

Do đó f(x) có hai nghiệm phân biệt là x1 = – 3 và x2 = 6.

Theo định lí về dấu tam thức bậc hai, ta có:

f(x) > 0 khi x ∈ (– 3; 6);

f(x) < 0 khi x ∈ (–∞; – 3) ∪ (6; +∞);

Suy ra f(x) ≥ 0 khi x ∈ [– 3; 6].

Vậy tập nghiệm của bất phương trình là S = [– 3; 6].

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: