Xét hệ tọa độ Oth trong mặt phẳng, trong đó trục Ot biểu thị thời gian t (tính bằng giây)
Xét hệ tọa độ Oth trong mặt phẳng, trong đó trục Ot biểu thị thời gian t (tính bằng giây) và trục Oh biểu thị độ cao h (tính bằng mét). Một quả bóng được đá lên từ điểm A(0; 0,3) và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 8m sau 1 giây và đạt độ cao 6m sau 2 giây. Trong khoảng thời gian nào (tính bằng giây) thì quả bóng ở độ cao lớn hơn 5m và nhỏ hơn 7m (làm tròn kết quả đến hàng phần nghìn).
Giải sách bài tập Toán 10 Bài 4: Bất phương trình bậc hai một ẩn
Bài 34 trang 57 SBT Toán 10 Tập 1: Xét hệ tọa độ Oth trong mặt phẳng, trong đó trục Ot biểu thị thời gian t (tính bằng giây) và trục Oh biểu thị độ cao h (tính bằng mét). Một quả bóng được đá lên từ điểm A(0; 0,3) và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 8m sau 1 giây và đạt độ cao 6m sau 2 giây. Trong khoảng thời gian nào (tính bằng giây) thì quả bóng ở độ cao lớn hơn 5m và nhỏ hơn 7m (làm tròn kết quả đến hàng phần nghìn).
Lời giải:
Ta có hình vẽ mô phỏng quỹ đạo chuyển động của quả bóng như hình vẽ:
Vì quỹ đạo chuyển động là một đường thẳng parabol có dạng h = at2 + bt + c (a ≠ 0).
Một quả bóng được đá lên từ điểm A(0; 0,3) nên điểm A thuộc vào parabol, thay t = 0 và h = 0,3 vào đồ thị hàm số ta được: 0,3 = a.02 + b.0 + c ⇔ c = 0,3 (1).
Bóng đạt độ cao h = 8m sau t = 1 giây nên điểm có tọa độ (1; 8) thuộc vào parabol.
Thay t = 1 và h = 8 vào đồ thị hàm số ta được: 8 = a.12 + b.1 + c ⇔ a + b + c = 8 (2).
Bóng đạt độ cao h = 6m sau t = 2 giây nên điểm có tọa độ (2; 6) thuộc vào parabol.
Thay t = 2 và h = 6 vào đồ thị hàm số ta được: 6 = a.22 + b.2 + c ⇔ 4a + 2b + c = 6 (3).
Từ (1), (2) và (3) ta có hệ phương trình: .
Ta có phương trình parabol cần tìm là: h = – 4,85t2 + 12,55t + 0,3.
Để chiều cao lớn hơn 5 thì h > 5 ⇔ – 4,85t2 + 12,55t + 0,3 > 5
⇔ – 4,85t2 + 12,55t – 4,7 > 0
Xét tam thức bậc hai f(t) = – 4,85t2 + 12,55t – 4,7, có a = – 4,85, ∆ = 12,552 – 4.(– 4,85).(– 4,7) = 66,3225 > 0.
Suy ra tam thức có hai nghiệm phân biệt t1 ≈ 0,454 và t2 ≈ 2,133.
Áp dụng định lí về dấu của tam thức bậc hai ta được: f(t) > 0 hay – 4,85t2 + 12,55t – 4,7 > 0 khi t ∈ (0,454; 2,133).
Để chiều cao nhỏ hơn 7 thì h < 7 ⇔ – 4,85t2 + 12,55t + 0,3 < 7
⇔ – 4,85t2 + 12,55t – 6,7 < 0
Xét tam thức bậc hai g(t) = – 4,85t2 + 12,55t – 6,7, có a = – 4,85, ∆ = 12,552 – 4.(– 4,85).(– 6,7) = 27,5225 > 0.
Suy ra tam thức có hai nghiệm phân biệt t1 ≈ 0,753 và t2 ≈ 1,835.
Áp dụng định lí về dấu của tam thức bậc hai ta được: g(t) < 0 hay – 4,85t2 + 12,55t – 6,7 < 0 khi t ∈ (– ∞; 0,753) ∪ (1,835; +∞).
Để quả bóng ở độ cao lớn hơn 5m và nhỏ hơn 7m thì t phải thuộc vào giao của hai tập (0,454; 2,133) hoặc (– ∞; 0,753) ∪ (1,835; +∞).
Ta có (0,454; 2,133) (– ∞; 0,753) ∪ (1,835; +∞) = (0,454; 0,753) ∪ (1,835; 2,133).
Vậy để quả bóng ở độ cao lớn hơn 5m và nhỏ hơn 7m thì thuộc khoảng 0,454 giây đến 0,753 giây hoặc 1,835 giây đến 2,133 giây.