Tìm giao các tập nghiệm của hai bất phương trình – 3x^2 + 7x + 10 ≥ 0 và – 2x^2 – 9x + 11 > 0
Tìm giao các tập nghiệm của hai bất phương trình – 3x^2 + 7x + 10 ≥ 0 và – 2x^2 – 9x + 11 > 0.
Giải sách bài tập Toán 10 Bài 4: Bất phương trình bậc hai một ẩn
Bài 32 trang 57 SBT Toán 10 Tập 1: Tìm giao các tập nghiệm của hai bất phương trình – 3x^2 + 7x + 10 ≥ 0 và – 2x^2 – 9x + 11 > 0.
Lời giải:
Xét tam thức bậc hai f(x) = – 3x2 + 7x + 10, có a = – 3 < 0 và ∆ = 72 – 4.(– 3).10 = 169 > 0.
Do đó tam thức có hai nghiệm phân biệt là x1 = – 1 và x2 = .
Áp dụng định lí về dấu của tam thức bậc hai ta có:
f(x) < 0 khi x ∈ ;
f(x) > 0 khi x ∈ .
Suy ra tập nghiệm của bất phương trình – 3x2 + 7x + 10 ≥ 0 là S1 = .
Xét tam thức bậc hai g(x) = – 2x2 – 9x + 11, có a = – 2 < 0 và ∆ = (– 9)2 – 4.(– 2).11 = 169 > 0.
Do đó tam thức có hai nghiệm phân biệt là x1 = 1 và x2 = .
Áp dụng định lí về dấu của tam thức bậc hai ta có:
g(x) < 0 khi x ∈ ;
g(x) > 0 khi x ∈ .
Suy ra tập nghiệm của bất phương trình – 2x2 – 9x + 11 > 0 là S2 = .
Đặt S = S1 ∩ S2 = .
Ta có hình vẽ sau:
Vậy giao của hai tập nghiệm của hai bất phương trình trên là S = [ – 1; 1).