Tìm tập xác định của mỗi hàm số sau trang 42


Tìm tập xác định của mỗi hàm số sau:

Giải sách bài tập Toán 10 Bài 1: Hàm số và đồ thị

Bài 3 trang 42 SBT Toán 10 Tập 1: Tìm tập xác định của mỗi hàm số sau:

a) y = – x3 + 4x – 1;

b) y = 5-6x;

c) y = 43x+1;

d) y = 12x-1-3-X;

e) y = 2x+3x2+3x-4;

f) y =x - 1 khi x > 05x + 1 khi x < -1 .

Lời giải:

a) Biểu thức – x3 + 4x – 1 xác định với mọi giá trị của x ∈ ℝ.

Do đó tập xác định của hàm số  y = – x3 + 4x – 1 là D = ℝ.

Vậy D = ℝ.

b) Biểu thức 5-6x xác định khi 5 – 6x ≥ 0 ⇔ x ≤ 56.

Do đó tập xác định của hàm số y = 5-6x là D = (-;56].

Vậy D = (-;56].

c) Biểu thức 43x+1 xác định khi 3x + 1 ≠ 0 ⇔ x ≠ -13.

Do đó tập xác định của hàm số y = 43x+1 là D = ℝ \ -13.

Vậy D = ℝ \ 13.

d) Biểu thức 12x-1 xác định khi 2x – 1 ≠ 0 ⇔ x ≠ 12 và biểu thức 3 - x xác định khi 3 – x  ≥  0 ⇔ x ≤ 3.

Do đó tập xác định của hàm số y = 12x-1-3-X là D = ( –∞; 3) \ 12.

Vậy D =  ( –∞; 3) \ 12.

e) Biểu thức 2x + 3x2+3x-4 xác định khi x2 + 3x – 4 ≠ 0 ⇔ x ≠ 1 và x ≠ – 4.

Do đó tập xác định của hàm số y = 2x + 3x2+3x-4 là D = ℝ \{1; – 4}.

Vậy D = ℝ \{1; – 4}.

f) Biểu thức x – 1 luôn xác định với x > 0 và biểu thức 5x + 1 luôn xác định với x < – 1. Do đó tập xác định của hàm số y = x -1 khi x > 05x + 1 khi x < -1 là D = (– ∞; – 1) ∪ (0; + ∞).

Vậy D = (– ∞; – 1) ∪ (0; + ∞).

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: